数学联邦政治世界观
超小超大

《数理哲学导论》(一) (10-6)

• 并不是所有的无穷集合的项数都是ℵ₀。例如实数的项数就是大于ℵ₀,事实上它的项数是2^ℵ₀>ℵ₀。即使n是无穷的,我们也不难证明2^n大于n,因为包含在一类中的子类数永远是大于这一类的分子数。

• 无穷基数没有极大。ℵ₀+1=ℵ₀。ℵ₀+n=ℵ₀,此处n为一归纳数。ℵ₀^2=ℵ₀。ℵ₀^n=ℵ₀,此处n为一归纳数。

• 2^ℵ₀是一个非常重要的数,它就是有“连续性”的序列的项数,所谓“连续性”乃是在康托的意义下的连续性。

• 我们从ℵ₀减去它自己,我们可能得到的结果从0到ℵ₀没有一定。ℵ₀为ℵ₀所除时所得的商可以是1到ℵ₀的任何数。

• 康托相信每个类和每一个基数不是归纳的,就是自反的,这一点或许是真的,并且或许很有可能证明;可是直到现在康托和其他的人所提出的证明都有缺点。

• 一个有穷的类或一个有穷的基数即是一个归纳的类或归纳的基数。一个无穷的类或一个无穷的基数即不是归纳的类或不是归纳的基数。所有的自反类与自反基数都是无穷的;但是现在还不知道是否所有的无穷类与无穷基数都是自反的。

九、无穷序列与序数

• 一个“无穷序列”,可以定义为其关系域是一个无穷类的序列。序级是一种无穷序列。一个无穷序列最值得注意的特征就是:只不过将它的各项重新排列就可以使它的序列数改变。

• 有第一第二两序列数,任何一个序列,如果它有第一个序列数,就包含另一个有第二个序列数的序列作为它的一部分,然而却没有一个序列,它有第二个序列数,并且还包括一个有第一个数的序列作为它的一部分。我们就称第一个序列数“大于”第二个序列数。

• 假使μ和ν是两个关系数,一般的法则是μ+ν不等于ν+μ。在有穷序数的情形下,二者是相等的,但这是一种稀有的例外。

• 所有使一个序级变得稀疏而得到的序数,它们所组成的序列本身长于任何其他的、由一个序级的项重新排列而得到的序列。这些序数形成一类,这类的基数可以证明是大于ℵ₀;这个数康托称之为ℵ1。从一个ℵ₀所能得到的序数依大小排列起来,它们所组成的序列的序数叫做ω1。是以序数为ω1的一个序列,它的关系域的基数是ℵ1。

• 一个序列,它的每一个子类都有一个首项,那么这序列称为“良序的”序列。一个“序数”乃是指一个良序的序列的关系数。因之它是序列数的一种。

• 如果在一个序列中,所选择的一组项后还有一个直接后继,又若某一个性质为这一组项所据有,那么这性质也必为它的直接后继所据有,这样的性质我们可以称为是“超穷遗传的”。在一个良序的序列中,序列的首项所有的超穷遗传性质,整个的序列也有。

• 从ℵ₀项中我们可能构造一个紧致的序列;我们已经知道有ℵ₀个分数,并且以大小为序的分数形成一个紧致的序列。

• 交换律、结合律、分配律和乘方定律,对于基数,不论有穷或无穷都真,对于有穷序数也真。但当我们讨论到无穷序数,或者一般的关系数时,有些定律成立,有些定律不成立。

十、极限与连续性

• “极限”概念是一个纯粹的序的概念,与量无涉。ℵ₀所以成为有穷数的极限,乃是由于在序列中它紧跟在这些有穷数的后面,这是一个次序方面的事实,而不是一个量方面的事实。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

全员恶人:攻略者 连载中
全员恶人:攻略者
ybsbsbsb
1.1万字1个月前
玄起凤鸣 连载中
玄起凤鸣
洛霂笙
虫族突然冲破封印归来,凤族全族被灭,身为凤族少主的凤烨唯一幸免,和身为竹马的龙族少主贺玄又会有何作为?又会如何洛溪大陆又将会迎来有什么变故?
1.9万字4周前
他的眼里是有星星的 连载中
他的眼里是有星星的
糯糯一云朵
(作品已签约)讲述的是大联盟第一守护者林沐星和狐族传说中的智者段繁的故事。本人文笔渣,写的不好,不过还是欢迎小伙伴们来看的。
11.0万字4周前
浮生有梦:水中月 连载中
浮生有梦:水中月
轻紫凝烟
闷骚修仙继承人X娇俏人鱼小郡主“我会以你爱我的方式爱你。”“愿你梦醒之时,仍记得我。”
13.0万字4周前
我竟然成了马桶人的孩子 连载中
我竟然成了马桶人的孩子
小监控
因为一场意外,我穿越到了监控人VS马桶人的世界,而且还成了马桶人的孩子
0.3万字4周前
潜执(有刀有甜) 连载中
潜执(有刀有甜)
温柔的执法
潜执校园篇,甜文
0.4万字4周前