数学联邦政治世界观
超小超大

Krull 维数和 Artin 环的结构 (4-1)

引理 (Prime Avoidance Lemma)

(1)设p₁,· · ·,pₙ 为素理想, l ⊂ A 为理想,如果

l ⊂ ∪pᵢ,

ᵢ₌₁

则必存在一个 1 ≤ i ≤ n 使得 l ⊂ pᵢ ;

(2)设l₁,· · ·,lₙ ⊂ A 为理想, p 为素理想,如果

∩lᵢ ⊂ p,

ᵢ₌₁

则必存在一个 1 ≤ i ≤ n 使得 lᵢ ⊂ p ;

特别地,可将(1)和(2)的“⊂ ”改为“ = ”

定理 (中国剩余定理,CRT)设 l₁,· · ·,lₙ ⊂ A 是理想,环同态

ф:A → A/l₁ × · · · × A/lₙ

x↦(x+l₁,· · ·,x+lₙ)

(1)如果对任意的i ≠ j 有 lᵢ 和 lⱼ 互素,即 lᵢ+lⱼ=(1)=A ,则 l₁ · · · lₙ=l₁∩· · ·∩lₙ ;、(2)Kerф=l₁∩· · ·∩lₙ ,进而 ф 为单射 ⇔ l₁∩· · ·∩lₙ=(0) ;

(3)ф 为满射 ⇔ 对任意的 i ≠ j 有 lᵢ 和 lⱼ 互素 ⇔ A/l₁∩· · ·∩lₙ ≃ A/l₁ × · · · × A/lₙ.

5.4 Artin 环

在前面的章节中我们证明了,一个模同时是 Noether 模和 Artin 模,当且仅当它具有有限长度,即有一个合成列;和模相比,环还有乘法的结构,这就导致 Artin 环的更多特殊性质,本节我们将介绍这些性质,并定义环的 Krull 维数,最后用 Krull 维数给出 Artin 环的结构定理

命题5.4.1 设 A 为 Artin 环

(1)A 的每个素理想均为极大理想;

Pf. 设 p ⊂ A 是素理想,则商环 B=A/p 是 Artin 整环,我们证明 B 为域

任取 0 ≠ x∈B ,考虑降链

(x) ⊃ (x²) ⊃ · · ·,

根据 Artin 环性质可知,存在 n ∈ ℤ 使得 (xⁿ)=(xⁿ⁺¹) ,于是存在 y∈B 使得 xⁿ=xⁿ⁺¹y ,利用整环的消去律即有 1=xy ,因此 x 可逆

(2)素谱SpecA 是有限集;

Pf.考虑集合 Σ:={m₁∩· · ·∩mᵣ|mᵢ ∈ SpecA},根据降链条件知 Σ 存在极小元,记为 m₁∩· · ·∩mₙ ,则对任一素理想 m ,必有

m∩m₁∩· · ·∩mₙ=m₁∩· · ·∩mₙ,

即 m₁∩· · ·∩mₙ ⊂ m ;利用 Prime avoidance 引理可知,存在 1 ≤ i ≤ n 使得 m=mᵢ ,根据极大理想性质即有 m=mᵢ

(3)A 的幂零根 𝕹 是幂零的;

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

承认对于我而言已经无所谓了 连载中
承认对于我而言已经无所谓了
黎踪
剧透不是好孩子
4.8万字4周前
次元杂集……欲望使徒 连载中
次元杂集……欲望使徒
无妄之花
来自易次元作品«欲望使徒»同人衍生。信息素:瑞伦/瑞希★苹果安纳希斯★葡萄酒阿索历士★白兰地卡勒★咖啡傅里森★清茶感兴趣可以去易次元搜索«欲......
3.9万字4周前
凤恋璃歌 连载中
凤恋璃歌
倾城冰舞
她是妖界的狐妖,他是天界的天帝,因一个果子而结识,她从此像跟屁虫一样跟随,当身份揭开之时,她愿为他放弃妖族,他也为了她放弃天帝身份,只愿两人......
11.7万字4周前
神兽金刚之她的灾难 连载中
神兽金刚之她的灾难
小念尊嘟
“好久不见林语涵”
0.4万字4周前
杂文:随笔录 连载中
杂文:随笔录
栀詞桉
谨以此段作为怀念,记过去一段模糊不清的岁月(2024.8.30)————宕记羡
3.5万字4周前
润泽记 连载中
润泽记
咩咩咩呀
远古生物复苏了
2.2万字4周前