数学联邦政治世界观
超小超大

一般形式 Maschke 定理证明 (2-1)

Maschke 定理的一种证明,作为 有限群表示论(二)Maschke 定理 的补充

定理 设 G 为有限群,域 F 的特征 p 不整除 G 的阶数 |G| , V 是域 F 上的一个 G– 模;设 U 是 V 的一个 G– 真子模,则存在 G– 子模 W 使得 V=U ⨁ W 为 G– 模的直和

首先,对给定的G– 子模 U ,总是存在线性子空间的直和补,设为 Z ,则 V=U ⨁ Z 是线性空间的直和,我们希望对 Z 作一些适当的变换得到一个新的空间 W ,使得 W 是 V 的 G– 子模

对z ∈ Z 和 g ∈ G ,我们有唯一的分解

gz=z₁+z₂,

z₁ ∈ U,z₂ ∈ Z,

定义投影映射τg:Z → U 和 σg:Z → Z 为 τgz=z₁,σgz=z₂,由于 g 给出 V 上的线性变换,我们知道 τg,σg 也皆是线性的,且有关系式

gz=τgz+σgz,(M1)

对任一z∈Z ,有 z=1 · z=τ₁z+σ₁z ,而 τ₁ z ∈ U,于是 τ₁z=0 , σ₁z=z ;利用(M1) 式,对任意的 g,h ∈ G 和 z ∈ Z ,我们有 τhgz+σhgz=(hg)z=h(gz)

=h(τgz+σgz)

=hτgz+hσgz

=hτgz+τhσgz+σhσgz,(M2)

而 hτgz∈hU=U , τhσgz∈U , σhσgz∈Z ,所以比较等式 (M2) 两边可得 τhgz=hτgz+τhσgz,(M3)

σhgz=σhσgz,(M4)

前面我们得出 σ₁:Z → Z 是 Z 上的恒等,代入 (M4) 式即有,对任一 z∈Z , z=σ₁z=σgg⁻¹ z=σgσg⁻¹ z,

z=σ₁z=σg⁻¹ gz=σg⁻¹ σgz,(M4.1)

由此推出 σg⁻¹=σg⁻¹ ;

于是对任意的g,h ∈ G 和 z∈Z ,有

(σhg)⁻¹(σh z)=σ(hg)⁻¹ (σhz)=σg⁻¹h⁻¹(σhz)

=σg⁻¹σh⁻¹σhz

=σg⁻¹ z∈Z.(M4.2)

在 (M3) 式中以 σg⁻¹ ᶻ 替换 z 得到

τhg(σ⁻¹hg σhz)=τhg(σg⁻¹z)=hτgσg⁻¹ z+τh z∈U,(M4.3)

将 (M4.3) 式对所有的 g∈G 求和可得

∑ τhg(σ⁻¹hg σhz)=h∑ τgσ⁻¹g z+|G|τhz,

g∈G

结合 (M4.1) 知

∑ τhg(σ₍hg₎⁻¹ σhz)=h∑ τgσg⁻¹ z+|G|τhz,

g∈G g∈G (M5)

现在定义映射 η:Z → U 为

1

ηz:=── ∑τg(σg⁻¹z) ∈ U,

|G| g∈G

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

哑迹 连载中
哑迹
梨栗y
在平行世界2036年,人类文明被毁前夕,部分人类觉醒异能,主角前世为了拯救世界而拼博,可是他对未来的无知导致失败,最后失望死去,然重生回到1......
2.0万字6个月前
心自偏 连载中
心自偏
高V不会
一条在找老婆的龙龙,不是修仙者,大多自视甚高,不愿入凡尘。受一友人影响,你决心入世寻爱,结果嘛......当然是大栽跟头主攻第二人称破镜重圆
19.6万字6个月前
我的,Ai男友 连载中
我的,Ai男友
荔余兮
一个任人欺负的李萧冉和一个只是人类研发出来的新型科技之间的相互碰撞到相互生存的故事,Ai的他要怎样帮助李萧冉走出任人宰割的昏暗之路呢?
2.6万字6个月前
奥特兄弟(亲情文) 连载中
奥特兄弟(亲情文)
紫萱_94317026140035694
奥特兄弟和孩子们的快乐活动
0.1万字6个月前
云族之旅 连载中
云族之旅
雪晴玥隐
关于小猫的童话,分为几卷,这是第一本,后期会解锁猫族的神秘力量哦
3.1万字6个月前
神印聊天室三 连载中
神印聊天室三
180***428_5982592670
聊天发图
0.1万字6个月前