数学联邦政治世界观
超小超大

Hilbert基定理与代数集

本文介绍Hilbert基定理,并给出它的一个几何背景

为介绍从几何的角度来看这个定理,我们先定义代数集

本文中我们设k 为代数闭域

Def 1

kⁿ 的代数集 V(S) 为 k[X₁,. . .,Xₙ] 的子集 S 的零点集

V(S)={(α₁,. . .,αₙ)∈kⁿ|f(α₁,. . .,αₙ)=0,∀f∈S}

此处我们没有约定S 有限,事实上,我们可以证明任意代数集都可视为有限个多项式的零点集,这就是Hilbert基定理

Thm 2

环k[X₁,. . .,Xₙ] 是notherian的

我们证明下面的引理

Lem 3

若A notherian,则 A[X] 亦然

pf

我们通过证明A[X] 的每个理想都是有限生成的来说明其是notherian的

设α 为 A[X] 的真子理想,记 α(i) 为所有出现在 i 次多项式的首项系数中的 A 的元素

容易验证,α(i) 为理想,且 α(i) ⊂ α(i+1)

任取含于α 的一个 A[X] 的理想 b ,显然 b(i) ⊂ α(i),∀i

我们先证若上式中对任意的 i 均有等号,则 b=α

任取f∈α

由于b(deg f)=α(deg f) ,则存在 g∈b 使得 deg(f – g)<deg f

于是f=g+f₁ ,且 deg f₁<deg f

同理f₁=g₁+f₂ ,且 deg f₂<deg f₁

于是存在m∈ℤ≥₀ 使得

f=g+g₁+. . .+gₘ ∈ b

下面我们构造一个有限生成的b 满足 b(i)=α(i) ,∀i

注意到α(1) ⊂ α(2) ⊂ . . .

由于A notherian,则存在 d∈ℤ≥₀ 使得 α(d)=α(d+1)=. . .

对任意i ≤ d , α(i) 有一个有限生成集,记为 {αᵢ₁,. . .,αᵢₙᵢ}

对一组(i,j) ,存在 fᵢⱼ ∈ α 使得其首项系数为 αᵢⱼ

取b 为生成集是 {fᵢⱼ} ,其中 1 ≤ i ≤ d , 1 ≤ j ≤ nᵢ

此时b(i)=α(i),∀i

于是我们有α=b 为有限生成的

由Lem 3,显然得到Thm 2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

执潜之誓 连载中
执潜之誓
昙星
皇室的勾心斗角,让所有人心生警惕,没有纯洁的友情也没有真挚的爱……终于有人打破了这悲惨的循环
0.4万字4周前
星拟:迷宫 连载中
星拟:迷宫
桶中加尿泼谁谁发疯
『停更中…』“迷宫中隐藏的秘密是什么呢?”“迷宫……就像人心一样复杂难解,难以走出去。”“呵,你觉得能来到迷宫的人能是什么好人?”“等你走出......
2.5万字4周前
公主归来,王子的赎罪 连载中
公主归来,王子的赎罪
忘洋回首
两年前,她看到自己喜欢了十二年的未婚夫爱上了别人,她知道他对他不会有感情,却不知,自己早已走到了他心里。两年后她不得不再次回来,带着一块伤痕......
20.9万字4周前
流浪的星星 连载中
流浪的星星
亡弦
你,相信神吗?  传闻,她有着倾城的美貌,宛若天仙下凡……不,她就是神,有着令整个次元宇宙的恐惧的力量!她的双眸,如同溪水般清澈,却又无神。......
10.2万字4周前
十二星座:觅友 连载中
十二星座:觅友
沐芷菁芜
(需知:人物介绍都是我的设定,请勿代入自己!!!当然你要是想对号入座我也没办法)当昔日的朋友分崩离析,甚至处于敌对面,你会怎么做?『白羊』要......
4.5万字4周前
大佬她神秘莫测 连载中
大佬她神秘莫测
NGL
“大数据上不见TA的踪影,这就意味着在现实生活中没有人知道TA到底是谁!”江易明语气中透露着焦急,现在是特殊时期,必须找到TA!可他们哪里知......
11.7万字4周前