数学联邦政治世界观
超小超大

Hilbert基定理与代数集

本文介绍Hilbert基定理,并给出它的一个几何背景

为介绍从几何的角度来看这个定理,我们先定义代数集

本文中我们设k 为代数闭域

Def 1

kⁿ 的代数集 V(S) 为 k[X₁,. . .,Xₙ] 的子集 S 的零点集

V(S)={(α₁,. . .,αₙ)∈kⁿ|f(α₁,. . .,αₙ)=0,∀f∈S}

此处我们没有约定S 有限,事实上,我们可以证明任意代数集都可视为有限个多项式的零点集,这就是Hilbert基定理

Thm 2

环k[X₁,. . .,Xₙ] 是notherian的

我们证明下面的引理

Lem 3

若A notherian,则 A[X] 亦然

pf

我们通过证明A[X] 的每个理想都是有限生成的来说明其是notherian的

设α 为 A[X] 的真子理想,记 α(i) 为所有出现在 i 次多项式的首项系数中的 A 的元素

容易验证,α(i) 为理想,且 α(i) ⊂ α(i+1)

任取含于α 的一个 A[X] 的理想 b ,显然 b(i) ⊂ α(i),∀i

我们先证若上式中对任意的 i 均有等号,则 b=α

任取f∈α

由于b(deg f)=α(deg f) ,则存在 g∈b 使得 deg(f – g)<deg f

于是f=g+f₁ ,且 deg f₁<deg f

同理f₁=g₁+f₂ ,且 deg f₂<deg f₁

于是存在m∈ℤ≥₀ 使得

f=g+g₁+. . .+gₘ ∈ b

下面我们构造一个有限生成的b 满足 b(i)=α(i) ,∀i

注意到α(1) ⊂ α(2) ⊂ . . .

由于A notherian,则存在 d∈ℤ≥₀ 使得 α(d)=α(d+1)=. . .

对任意i ≤ d , α(i) 有一个有限生成集,记为 {αᵢ₁,. . .,αᵢₙᵢ}

对一组(i,j) ,存在 fᵢⱼ ∈ α 使得其首项系数为 αᵢⱼ

取b 为生成集是 {fᵢⱼ} ,其中 1 ≤ i ≤ d , 1 ≤ j ≤ nᵢ

此时b(i)=α(i),∀i

于是我们有α=b 为有限生成的

由Lem 3,显然得到Thm 2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无尽的幻境 连载中
无尽的幻境
患幻想症的代码
讽刺人类
0.4万字8个月前
仙三世:故君几何 连载中
仙三世:故君几何
竹椿萱风
正在预收中,筹备中“你可曾爱我?”“不曾爱过”这一切都是一开始都不可能有的结局,或许那么在结局之中,你还会如当初那般吗?
0.0万字8个月前
特种兵学校之魔法般的超能力 连载中
特种兵学校之魔法般的超能力
素雪亭晴
当学员们获得超能力后,会发生什么呢?
5.9万字8个月前
轩秀:尘埃落定 连载中
轩秀:尘埃落定
酱酱子在努力
简介正在更新
0.9万字8个月前
尘印 连载中
尘印
初泽辰
尘封起来的,是历史,是纠葛,还是人心……一层层抽丝剥茧,打开封印,埋藏的又是怎样的真相。
6.7万字8个月前
第5册(下) 连载中
第5册(下)
江江江羡予
金色纹路光芒流转,就像是活过来了似的,twl自身的气血、气息开始迅速提升,金色雾气弥漫在他身体周围,那冰冷的气流很快就弥漫在气血之中,被吸收......
10.1万字8个月前