数学联邦政治世界观
超小超大

Maschke 定理 (5-1)

1.3 Maschke 定理

本节我们主要研究有限群G上有限维 G 模的分解;既然是分解,自然需要“可约”和“不可约”的概念

定义1.3.1 设 V 是一个 G– 模, V 的一个G– 子模是指一个线性子空间 W ⊂ V 满足在 G 的作用下封闭,即 GW ⊂ W ,或者说对任一 g∈G 和任一 ω ∈ W 有 gω ∈ W ;我们也称 W 是一个 G– 不变的子模,记为 W ≤ V

显然{0}和 V 都是 V 的 G– 子模,称为 V 的平凡 G– 子模; G– 子模的概念和线性代数中不变子空间的概念高度接近,可以看作不变子空间这一概念的自然推广

(1)取G=Sₙ , V:=ℂ{1,. . .,n} ,其中数字 1,· · ·,n 仅代表符号,不具有算术意义,则 W=:ℂ{1+· · ·+n} 是 V 的一个一维 Sₙ – 子模;

根据上一节的知识我们知道V 对应的表示就是置换群 Sₙ 的典型表示,记为 X:Sₙ → GL(V) ; X 限制在 Sₙ – 子模 W 上可以得到一个子表示 X|ᴡ:W → GL(W) ,由于元素 1+· · ·+n 在 Sₙ 作用下保持不变,子表示 X|ᴡ 是平凡表示,然而当 n ≥ 2 时 W 显然并不是平凡的 Sₙ 子模;

(2)设群G={g₁,· · ·,gₙ} ,考虑 G 的正则表示,它生成了一个群代数 ℂ[G]={c₁g₁+· · ·+cₙgₙ|cᵢ ∈ ℂ} ,置 W:=ℂ[g₁+· · ·+gₙ] ,则 W 是 ℂ[G] 的一维子空间,进一步由 g(g₁+· · ·+gₙ)=g₁+· · ·+gₙ,g ∈ G可知 W 是正则表示下的 G– 子模;

(3)考虑Sₙ 的正则表示,它生成群代数 ℂ[Sₙ] ,置

W=ℂ[∑ sgn(σ)σ].

σ∈Sₙ

对任一 π∈Sₙ ,有

π(∑ sgn(σ)σ)=∑ sgn(σ)πσ=sgn(π)∑sgn(σ)σ,

σ∈Sₙ σ∈Sₙ σ∈Sₙ

所以 Sₙ 的正则表示限制在 W 上得到的子表示就是 Sₙ 的符号表示

(reducible),如果 V 包含一个非平凡的 G– 子模,否则称 V 是不可约的(irreducible);由于 G– 模总是和 G 的线性表示 X:G → GL(V) 一一对应,我们称 X 是可约表示(/不可约表示),如果 V 是可约的(/不可约的)

我们很容易验证:假设V 有限维,则 V 可约意味着存在 V 的一组基 β ,使得对每个 g∈G , X(g) 均有以下形式

A(g) B(g)

X(g)=( ),(✶)

0 C(g)

其中每个 A(g) 具有相同的阶数;反之也成立

我们看几个例子:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

狼霜群语公告栏 连载中
狼霜群语公告栏
逐月霜语
由于书被封了,七天不能更新,所以在这里更,解封的时候再重新发布,这个可能会下架,(解封后)
0.1万字4周前
始源之风 连载中
始源之风
洛云璎
我一生中或许还会有很多个夏天,但不会有一个夏天,会如今夏,欲买桂花同在酒,终不似少年游。
0.2万字4周前
蛇王夫君娇娇弱弱 连载中
蛇王夫君娇娇弱弱
长飞雁
[完结已签,勿抄]本该出现在天君宴会上的两人在某座山后相遇。妖族说出来都能止小儿哭啼的蛇族蛇王兼妖王化身受伤孱弱的小黑蛇……被清诀飒气的魔君......
32.5万字4周前
在暴雪时分:一池江水续写-d909 连载中
在暴雪时分:一池江水续写-d909
柳扉扉
初一,我们的故事才刚刚刚开始。——江杨
4.3万字4周前
重生女配抢机缘 连载中
重生女配抢机缘
可乐吐司
一朝重生,且看我绽放出万丈光芒!
0.7万字4周前
被狼崽子捡走之后的故事 连载中
被狼崽子捡走之后的故事
君苑酱
【已完结】作为一个网文太太的苏芄兰没想到自己会穿越到自己的小说里。还成了一笔带过被献祭给反派的炮灰少女。可是自家反派儿子好像还没觉醒黑化因素......
7.9万字4周前