数学联邦政治世界观
超小超大

Maschke 定理 (5-1)

1.3 Maschke 定理

本节我们主要研究有限群G上有限维 G 模的分解;既然是分解,自然需要“可约”和“不可约”的概念

定义1.3.1 设 V 是一个 G– 模, V 的一个G– 子模是指一个线性子空间 W ⊂ V 满足在 G 的作用下封闭,即 GW ⊂ W ,或者说对任一 g∈G 和任一 ω ∈ W 有 gω ∈ W ;我们也称 W 是一个 G– 不变的子模,记为 W ≤ V

显然{0}和 V 都是 V 的 G– 子模,称为 V 的平凡 G– 子模; G– 子模的概念和线性代数中不变子空间的概念高度接近,可以看作不变子空间这一概念的自然推广

(1)取G=Sₙ , V:=ℂ{1,. . .,n} ,其中数字 1,· · ·,n 仅代表符号,不具有算术意义,则 W=:ℂ{1+· · ·+n} 是 V 的一个一维 Sₙ – 子模;

根据上一节的知识我们知道V 对应的表示就是置换群 Sₙ 的典型表示,记为 X:Sₙ → GL(V) ; X 限制在 Sₙ – 子模 W 上可以得到一个子表示 X|ᴡ:W → GL(W) ,由于元素 1+· · ·+n 在 Sₙ 作用下保持不变,子表示 X|ᴡ 是平凡表示,然而当 n ≥ 2 时 W 显然并不是平凡的 Sₙ 子模;

(2)设群G={g₁,· · ·,gₙ} ,考虑 G 的正则表示,它生成了一个群代数 ℂ[G]={c₁g₁+· · ·+cₙgₙ|cᵢ ∈ ℂ} ,置 W:=ℂ[g₁+· · ·+gₙ] ,则 W 是 ℂ[G] 的一维子空间,进一步由 g(g₁+· · ·+gₙ)=g₁+· · ·+gₙ,g ∈ G可知 W 是正则表示下的 G– 子模;

(3)考虑Sₙ 的正则表示,它生成群代数 ℂ[Sₙ] ,置

W=ℂ[∑ sgn(σ)σ].

σ∈Sₙ

对任一 π∈Sₙ ,有

π(∑ sgn(σ)σ)=∑ sgn(σ)πσ=sgn(π)∑sgn(σ)σ,

σ∈Sₙ σ∈Sₙ σ∈Sₙ

所以 Sₙ 的正则表示限制在 W 上得到的子表示就是 Sₙ 的符号表示

(reducible),如果 V 包含一个非平凡的 G– 子模,否则称 V 是不可约的(irreducible);由于 G– 模总是和 G 的线性表示 X:G → GL(V) 一一对应,我们称 X 是可约表示(/不可约表示),如果 V 是可约的(/不可约的)

我们很容易验证:假设V 有限维,则 V 可约意味着存在 V 的一组基 β ,使得对每个 g∈G , X(g) 均有以下形式

A(g) B(g)

X(g)=( ),(✶)

0 C(g)

其中每个 A(g) 具有相同的阶数;反之也成立

我们看几个例子:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

管理局的日常生活 连载中
管理局的日常生活
江无忌
0.8万字1年前
逆天女子 连载中
逆天女子
酒中:沐颜—古代美人
废柴?被人打骂?还不还手?那就让你们看看什么才叫逆天!什么才叫王者!救弱扶贫,开始全新的世界
0.1万字1年前
木时空之女帝的小狐狸 连载中
木时空之女帝的小狐狸
蔺家七月
【弃坑】
15.9万字1年前
花程恋之刺客桃花 连载中
花程恋之刺客桃花
长眠清风
总有一天你会违背本心,人心都是善变的。———离有时候你不能只相信自己看到的,事实总会颠覆你的想象。———月无双世上没有后悔药,自己做的错事,......
5.8万字1年前
京剧猫之被利用的白糖 连载中
京剧猫之被利用的白糖
影陌轻尘
无意中知道了朋友是在利用自己,受到了刺激,从而知道了自己的身世,原来他就是创世神。黯,修,元的师傅。
0.3万字1年前
雪疆夜域 连载中
雪疆夜域
橙色羽翼
天玑由于太闲耗费神力造出了镜中世界,处于幻境之中的雪族与夜族灵力强大,没想到强强结合却造出了最弱的人族,而这最弱的人族却成为了镜中世界的主宰......
9.7万字1年前