数学联邦政治世界观
超小超大

Baire范畴定理 (10-9)

B₁ 是Banach空间. 假设 T 是满射, 那么若我们将 T 看成是从

B₁ 到 B₂ 的映射,则 T 满足推论(12)的条件, 因此 T 的逆映射 T⁻¹:B₂

→ B₁ 是连续的,这又意味着 T⁻¹:B₂ → B₁ 是连续的. 这样的话我们可以证明 L¹-范数和 sup-范数是等价的,但这是不可能的,因为 B₁ 不是完备的而

B₁ 是完备的,矛盾.

4. 闭图像定理

定义4. 设 X,Y 为赋范空间,T:X → Y 为线性算子. 如果 T 的图像

Gᴛ={(x,Tx)∈X × Y:x∈X}

在 X × Y 中为闭集, 则称 T 为闭算子.

定理15 (闭图像定理). 设 X,Y 为Banach空间. 若 T:X → Y 为闭线性算子,则 T 是有界的.

证明. 对空间 X × Y 赋予范数 ‖(x,y)‖x×ʏ=‖x‖x+‖y‖ʏ,那么容易证明 X × Y 是Banach空间. 由于 Gᴛ 是它的闭子集, 因此也是Banach空间. 考虑投影 Px:G(T) → X,(x,Tx)↦x 和 Pʏ:G(T) → Y,(x,Tx)↦Tx,易证它们都是有界线性算子. 此外 Px 是满射, 因此根据推论(12), 它的逆 P⁻¹x 是有界线性算子. 由于 T=Pʏ◦P⁻¹x,因此 T 是有界的.

4.1. 关于 Lᵖ 的闭子空间的Grothendieck定理

定理16. 设 (X,F,μ) 是一个有限测度空间,即 μ(X)<∞. 假设

(i) E 是 Lᵖ(X,μ) 的闭子空间,其中 1 ≤ p<∞,并且

(ii) E 包含于 L∞(X,μ) 中.

则 E 是有限维的.

证明. 由于 E∈L∞ 并且 X 具有有限测度, 我们发现 E⊂L² 并且

‖f‖ʟ² ≤ C‖f‖ʟ∞,∀f∈E.

定理证明的关键在于反向不等式的证明, 然后利用 L² 的Hilbert空间结构.

赋予 Lᵖ-范数后 E 构成一个Banach空间, 因为它是 Lᵖ(X,μ) 的闭子空间. 令

I:E↦L∞(X,μ)

表示恒等映射 I(f)=f. 那么 E 是线性的并且是闭的. 事实上, 假设在 E 中 fₙ → f 以及在 L∞ 中 fₙ → g. 那么存在 {fₙ} 的子列几乎处处收敛到 f,因此 f=g 几乎处处成立, 如所求. 根据闭图像定理, 存在 M>0 使得

‖f‖ʟ∞ ≤ M‖f‖ʟᵖ,∀f∈E. (5)

引理17. 在定理的条件下, 存在 A>0 使得

‖f‖ʟ∞ ≤ A‖f‖ʟ²,∀f∈E.

证明. 若 1 ≤ p ≤ 2,则Hölder不等式带共轭指数 r=2/p 和 r*=2/(2 – p) 产生

2–p

∫|f|ᵖ ≤ (∫|f|²)ᵖ/²(∫1) ──.

2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

他的玫瑰庄园 连载中
他的玫瑰庄园
仟余QY
系统提示:【欢迎进入玫瑰庄园。】“我好像忘记了一个很重要的人…我能感觉到他就在这里。”“欢迎回来,这个属于我们的家。”厄尘×白洛——————......
0.4万字4周前
百日之行(第二季因为第一季没了) 连载中
百日之行(第二季因为第一季没了)
枫吹叶
第二季
0.2万字4周前
京烟龙女 连载中
京烟龙女
江船露白
【本文已完结】十八年前,九星连珠,大星陨落,京烟之野,龙女降世。十八年后,采莲少女,天真活泼,一名受伤男子,突然闯入她的世界。京烟异象,白池......
36.4万字4周前
甜宠兽世:快把兽夫带回家 连载中
甜宠兽世:快把兽夫带回家
柠盏
段夏月因被组织追杀,意外来到了兽世,兽世虽然穷,这资源还是不错的,还别说,这帅哥真多啊。霸道兽王来相争,各路兽王都拜倒在段夏月的石榴裙下还有......
9.6万字4周前
九尾狐神:毒傲天下 连载中
九尾狐神:毒傲天下
风起云岚
初见时,她是那至高无上的神皇,他却只是一个混血的魔族。她救了他,却也在自己的心里种下了一颗种子,以及一世的情劫。为他堕落,为他成魔。又一生,......
10.7万字4周前
主神之泪 连载中
主神之泪
Ax明月行c
你总说时间会治愈一切,但如果时间也病了呢,见过它的诅咒吗?[会停更但不会不更。]
7.1万字4周前