数学联邦政治世界观
超小超大

希尔伯特基定理 (2-1)

命题1 设 A 为 Noether 环

(1)如果 A ↠ B 是满的环同态,则 [公式] 为 Noether 环;

B同构于A的一个商环

(2)设S⊂A 为乘性子集,则分式环 S⁻¹A 是 Noether 环;特别地,局部化是保持了 Noether 的性质;

Pf. 只需注意到 S⁻¹A 的任一理想均有形式 S⁻¹ l ,其中 l ⊂ A 为 A 的理想

(3)设B 为有限 A 代数,即 B 作为 A– 模是有限生成的,则 B 为 Noether 环;

Pf. 首先 B 是 Noether A– 模,注意到 B 的任一理想(B– 子模)同时也是 A– 子模,因此作为 A– 模是有限生成的,进而作为 B– 模也是有限生成的

我们知道,A 上的除了有有限代数(finite),还有较弱一点的有限生成代数(finite type),即作为环是 A– 有限生成的,希尔伯特基定理实际上就是在证明有限生成代数也保持了环的 Noether 性

定理2 (Hilbert's basis theorem)设 A 为 Noether 环,则对任意的 n ≥ 1 , A 上的 n 元多项式环 A[X₁,. . .,Xₙ] 也是 Noether 环

Pf 我们采用书上的证明方法

根据自然的环同构 A[X₁,. . .,Xₙ] ≃A[X₁,. . .,Xₙ₋₁] [Xₙ],可将问题约化为 n=1 的情形;只需对 Noether 环 A 证明,多项式环 A[Ⅹ] 是 Noether 环即可;

任取理想 l ⊂ A[X] ,我们期望构造有限个元素 f₁,. . .,fₘ ∈ A[X] 使得 l=(f₁,. . .,fₘ)

对任意的 f=∑ αₖ Xᵏ ∈ A[X],

ₖ₌₀

αₙ ≠ 0 ,定义 f 的领导系数为 in(f):=αₙ.

下面来归纳构造;首先选取 f₁∈l\{0} ,使得次数 deg fₖ₊₁ 最小;现假设已经选取 f₁,· · ·,fₖ∈l ,如果有 l=(f₁,. . .,fₘ) 则构造终止,否则选取 fₖ₊₁ ∈ l 使得:

(1) fₖ₊₁ ∈ l\(f₁,. . .,fₖ) ;

(2)次数 deg fₖ₊₁ 在满足条件(1)的前提下最小;

现在证明上述构造的过程在有限步内必终止

设 αᵢ:=in(fᵢ) ,由 A 为 Noether 环可知,理想升链

(α₁) ⊂ (α₁,α₂) ⊂ · · ·

由此可得理想 (α₁,α₂,· · ·,αₖ,· · ·) 有一组生成元 α₁,· · ·,αₘ ;假设上述的构造可以进行到第 m+1 步,则有表达式

in(fₘ₊₁)=αₘ₊₁=∑ uᵢαᵢ,

ᵢ₌₁

其中 u₁,· · ·,uₘ∈A ;根据次数的最小性可知,对 i=1,· · ·,m 皆有

dᵢ:=deg fₘ₊₁ – deg fᵢ ≥ 0

于是

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

归魂渊 连载中
归魂渊
冰霜之间
有花无叶,有叶无花,永生永世,无法相见,生生不息,轮回不止,悲剧之爱,曼珠沙华。
3.8万字8个月前
幻界奇缘——第一季——核影之灾 连载中
幻界奇缘——第一季——核影之灾
杨老六
0.3万字8个月前
梦的记录 连载中
梦的记录
摆烂写文
作者真实的梦,记性差所以记录做过的梦,希望大家喜欢看我的梦
0.5万字8个月前
再次离开 连载中
再次离开
该用户已注销
剧透的不是好孩子
4.2万字7个月前
规则怪谈:主打一个叛逆! 连载中
规则怪谈:主打一个叛逆!
雨溪瑶
无女主+爽文+老六+规则怪谈+搞笑+大佬+刺激。我叫顾夜,或许我天生就不同,后来,我被选中规则怪谈,成,龙国免规则怪谈降临,败,龙国和怪谈融......
1.0万字7个月前
往后余生,愿与君浪迹天涯 连载中
往后余生,愿与君浪迹天涯
七姑子
2.8万字7个月前