数学联邦政治世界观
超小超大

希尔伯特基定理 (2-1)

命题1 设 A 为 Noether 环

(1)如果 A ↠ B 是满的环同态,则 [公式] 为 Noether 环;

B同构于A的一个商环

(2)设S⊂A 为乘性子集,则分式环 S⁻¹A 是 Noether 环;特别地,局部化是保持了 Noether 的性质;

Pf. 只需注意到 S⁻¹A 的任一理想均有形式 S⁻¹ l ,其中 l ⊂ A 为 A 的理想

(3)设B 为有限 A 代数,即 B 作为 A– 模是有限生成的,则 B 为 Noether 环;

Pf. 首先 B 是 Noether A– 模,注意到 B 的任一理想(B– 子模)同时也是 A– 子模,因此作为 A– 模是有限生成的,进而作为 B– 模也是有限生成的

我们知道,A 上的除了有有限代数(finite),还有较弱一点的有限生成代数(finite type),即作为环是 A– 有限生成的,希尔伯特基定理实际上就是在证明有限生成代数也保持了环的 Noether 性

定理2 (Hilbert's basis theorem)设 A 为 Noether 环,则对任意的 n ≥ 1 , A 上的 n 元多项式环 A[X₁,. . .,Xₙ] 也是 Noether 环

Pf 我们采用书上的证明方法

根据自然的环同构 A[X₁,. . .,Xₙ] ≃A[X₁,. . .,Xₙ₋₁] [Xₙ],可将问题约化为 n=1 的情形;只需对 Noether 环 A 证明,多项式环 A[Ⅹ] 是 Noether 环即可;

任取理想 l ⊂ A[X] ,我们期望构造有限个元素 f₁,. . .,fₘ ∈ A[X] 使得 l=(f₁,. . .,fₘ)

对任意的 f=∑ αₖ Xᵏ ∈ A[X],

ₖ₌₀

αₙ ≠ 0 ,定义 f 的领导系数为 in(f):=αₙ.

下面来归纳构造;首先选取 f₁∈l\{0} ,使得次数 deg fₖ₊₁ 最小;现假设已经选取 f₁,· · ·,fₖ∈l ,如果有 l=(f₁,. . .,fₘ) 则构造终止,否则选取 fₖ₊₁ ∈ l 使得:

(1) fₖ₊₁ ∈ l\(f₁,. . .,fₖ) ;

(2)次数 deg fₖ₊₁ 在满足条件(1)的前提下最小;

现在证明上述构造的过程在有限步内必终止

设 αᵢ:=in(fᵢ) ,由 A 为 Noether 环可知,理想升链

(α₁) ⊂ (α₁,α₂) ⊂ · · ·

由此可得理想 (α₁,α₂,· · ·,αₖ,· · ·) 有一组生成元 α₁,· · ·,αₘ ;假设上述的构造可以进行到第 m+1 步,则有表达式

in(fₘ₊₁)=αₘ₊₁=∑ uᵢαᵢ,

ᵢ₌₁

其中 u₁,· · ·,uₘ∈A ;根据次数的最小性可知,对 i=1,· · ·,m 皆有

dᵢ:=deg fₘ₊₁ – deg fᵢ ≥ 0

于是

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

神的碎叨 连载中
神的碎叨
温浨岭
一个女孩去寻找亲人的道路上,与朋友一同陷入了一场冒险,明白了神到底是什么,也明白了活着的重要性,他们面对困难,面对误会,面对痛苦,但他们也在......
0.5万字8个月前
潋幻春颂歌 连载中
潋幻春颂歌
frost千笙
谁把谁的灵魂,装进谁的身体谁把谁的身体,变成囹圄囚禁自己。Youarenotguilty,guiltyistheworld.
0.4万字8个月前
陷落凡尘 连载中
陷落凡尘
该用户已注销
浮生踟蹰,芳华不过刹那而已生荣败落,一朝一夕,顽执一时欢欲,患得患失纵千万人赴红尘,或忧怖,或喜乐,皆梦幻泡影清明无界,我见真我。
38.7万字8个月前
(天乩之白蛇传说)后续 连载中
(天乩之白蛇传说)后续
Hcg:
紫宣,情是什么?你是前世未止的心跳,你是来生胸前的记号.
3.7万字8个月前
龙逆出渊 连载中
龙逆出渊
墨雨倾心
以往,我从不知道自己究竟为何而生?似乎眼中的未来一片的茫然。如今,我明白了,我想要变的强大,强大到可以守护我所保护的一切。无能,不过是自己懦......
13.9万字8个月前
大海会奔向哪里 连载中
大海会奔向哪里
I格瑞叶辉清明
abo文,幼儿园文笔主cp:心海每篇的字都挺少的可怜,我不是太有空更文会尽量一日两更
0.7万字8个月前