数学联邦政治世界观
超小超大

范畴论基础(Grothendieck宇宙)

定义 集合 ∪ 称为宇宙,如果满足以下性质

1.u∈∪⇒u⊂∪,即:∪是传递集;

2.u,υ∈∪⇒{u,υ}∈∪

3.u∈∪⇒P(u)∈∪

4.若 l ∈ ∪ , 一族集合 {uᵢ:i∈l}满足 ∀i,uᵢ ∈∪, 则 ∪uᵢ ∈ ∪

i∈l

5.ℤ≥₀∈∪.

对于集合Ⅹ,若 X∈∪ 则称为 ∪ -集;若 X 和一个 ∪ -集等势,则称为 ∪ -小集.

注 上述表述如果用更通俗的语言来表达, 可以理解为满足以下性质的集合 ∪ 称为宇宙:

1. ∪ 中的元素都是集合且是 ∪ 的子集

2. ∪ 中有限个元素构成的集合是 ∪ 的元素

3. ∪ 中元素的幂集是 ∪ 的元素

4. ∪ 中元素的任意并(指标需要也是 ∪ 中元素)都是 ∪ 的元素

5. ℤ≥₀ 是 ∪ 的元素

并且∪ 中元素可以简称为 ∪ -集.

假设 (A. Grothendieck) 对任何集合 X,存在宇宙 ∪ 使得 X∈∪ .

本着得过且过的原则, Grothendieck 宇宙就介绍到这里.

定义 一个范畴 C 称作是 ∪ -范畴,如果对任意对象 X,Y,从 X 到 Y 的态射 Homᴄ(X,Y) 都是 ∪ -小集. 如果态射集 Mor(C) 也是 ∪ -小集, 则称之为 ∪ -小范畴.

注 一个范畴 C 是不是 ∪ -范畴,主要看它的态射集 Mor(C) .

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我内心深处的一天 连载中
我内心深处的一天
李悠_75513963649807897
0.4万字7个月前
一年之别再相遇 连载中
一年之别再相遇
翼与念
『分别×破镜重圆』原作结局改动+自编故事(文笔不好,见谅)在最后的大战,人类代表唐舞麟却临时反悔,决定帮助魂兽,和古月娜在一起。史莱克学院的......
4.1万字7个月前
墨香铜臭,无羁 连载中
墨香铜臭,无羁
_陈嘉佳
“夷陵老祖”魏无羡,前世受万人唾骂,声名狼籍,被情同手足的师弟带人端了老巢,纵横一世,死无全尸。十三年后,魏无羡被人以禁术强行召回世上,竟沦......
0.1万字6个月前
幻城之冰族小王子 连载中
幻城之冰族小王子
该用户已注销
1.3万字6个月前
穿越之夫君慢慢宠 连载中
穿越之夫君慢慢宠
水象
司徒音怎么都没想到,她堂堂一代天才,按照在老师那里偷来的古籍做个实验,居然,把自己给炸死了,然后还莫名其妙的穿越了,她觉得值得研究一下,最后......
7.0万字6个月前
叶罗丽精灵梦之水默峦 连载中
叶罗丽精灵梦之水默峦
苦海绝夜
0.5万字6个月前