数学联邦政治世界观
超小超大

Galois 群的上同调群 (4-4)

为证明 ξ ∈ B¹(G,K),由 (3) 式,只要证存在 α∈K× 使得 τξ=α · (ατ)⁻¹ (∀τ ∈ G)成立。由引理 1,存在 x∈K 使得 b=∑σξxσ ≠ 0。

σ∈G

对于任一 τ∈G,由 (7) 式,有

bτ=∑(σξ)τ xστ=∑((στ)ξ(τξ)⁻¹)xστ=b · (τξ)⁻¹. σ∈G σ∈G

取 α=b 即可。 ▢

最后我们指出:K 作为加法群当然也是 ℤ[Gal(K/F)] 模,因此可考虑 ℤ[Gal(K/F)] 的取值在加法群 K 中的上同调群 Hⁱ(Gal(K/F),K) (i ≥ 1)。结论是:这些上同调群都是平凡的。证明此结论的一条途径是应用正规基定理,即:如果 K/F 是有限 Galois 扩张,则存在 x∈K 使得 {xσ│σ ∈ Gal(K/F)} 构成 K(作为 F-线性空间)的一组基。但是,一般而言, Hⁱ(Gal(K/F),K×) 当 i>1 时不一定是平凡的。H²(Gal(K/F),K×) 称为 K/F 的 Brauer 群。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

精神状态怎么样? 连载中
精神状态怎么样?
慕斯比比
灵光乍现!神女闪亮登场!战神瑟瑟发抖!如果我没说错的话,那就是没说错的话。
7.1万字1年前
我媳妇什么时候破壳 连载中
我媳妇什么时候破壳
晚凉殿下
等了十万年,又是十万年。好不容易媳妇诞生了。某龙看着面前的这颗蛋,暗暗叹了口气。又是等待媳妇破壳的一天。我媳妇什么时候破壳?我媳妇什么时候破......
25.2万字1年前
仙尊被魔尊高调掳走后 连载中
仙尊被魔尊高调掳走后
赵琅暥
点新书《魔尊,你家仙尊来娶你了》高能场面随时有。千帆历尽,归来,不负你魔尊和仙尊一同下界历劫,轮回后,一同归位,不过几天魔尊上天界,求爱不成......
27.2万字1年前
HP:今生挚爱斯内普 连载中
HP:今生挚爱斯内普
泪依如冰
斯莱特林,审时度势,明艳,内敛,优雅,然后,节制任何感情的付出对斯莱特林来说都是弥足可贵,需要慎重交付的,不要在意刚开始他们拒绝你多少次,他......
4.9万字1年前
狼人杀:这个女巫有点秀 连载中
狼人杀:这个女巫有点秀
素衣渡江
【已签约,首发话本,请勿搬运,违者必究。】【无限流,全员恶人】“生,还是死,这是一个问题。”“在这场游戏里不要轻易相信任何人,包括我。”雾音......
9.6万字1年前
一见钟情他与她 连载中
一见钟情他与她
ice冰淇淋
本书已签约,勿转载,转载后果自负。喜欢二爷的丫头,幻想而已,勿上升到本人,二爷一见钟情的慢慢追妻路~
15.4万字1年前