数学联邦政治世界观
超小超大

Mycielski定理

定理(Mycielski):设Ⅹ 为一波兰空间, R ⊆ Ⅹ × X 是其上的一个meager的等价关系,则存在一个闭的perfect子集 C ⊆ X ,使得 C 中元素两两 R-不等价。

Proof:假设Dₙ ⊆ Ⅹ × X 为一列稠密开集,使得 R∩∩Dₙ=∅ 。

下面我们构造一个从 2ω 到非空开集的映射 σ ↦ Vσ 使得:

───

1. 对每个 σ ∈ α<ω,Vσ⁀i ⊆ Vσ,其中 i ∈ {0,1} 。

2. 对每个 σ ∈ 2<ω , diam(Vσ) ≤ 2⁻|σ|。

3. 对每个 n ,以及 σ,τ ∈ 2ⁿ⁺¹ ,如果 σ ≠ τ ,则 Vσ × Vτ ⊆ ∩ Dₙ 。

m≤n

令V〈·〉=X 。现在假设对每个 σ ∈ 2ⁿ ,Vσ 都已经定义好了,现在取 V' ⊂ Vσ 使得

────

V' ⊆ Vσ ,且 diam(V') ≤ 2⁻ⁿ⁻¹ ,考察 V' × V' ∩∩ Dₙ

m≤n

,这是一个非空开集,取 Vσ⁀0,Vσ⁀1 使得 ∅ ≠ Vσ⁀0 × Vσ⁀1 ⊆ V' × V' ∩ ∩ Dₙ 。

m≤n

如果 σ,τ ∈ 2ⁿ 不相容,我们再对 Vσ⁀i,Vτ⁀i 做类似的操作,保证 Vσ⁀i × Vτ⁀i ⊆ Dₙ ,其中 i ∈ {0,1} 。

现在定义映射f:2ω → X 使得

x↦∩Vₓ⨡ₙ

n∈ω 则这个映射定义良好,因为 ∩ₙ Vₓ⨡ₙ

───

=∩ₙ Vₓ⨡ₙ 为单点集。而且这个映射是单射,因为如果 x ≠ y ∈ 2ω ,则对所有 n , (x,y) ∉ ∪ₙ ,从而 (x,y) ∉ R ,所以 x ≠ y 。 f 显然是连续的,因为 f⁻¹[Nₛ]={x ∈ 2ω:∃n Vₓ⨡ₙ ⊆ Nₛ} 从而像集 f[2ω] ⊆ X 就是一个perfect的闭集。闭性因为 2ω 的紧致性,无孤立点因为单射。其元素两两 R-不等价刚刚已经证明过了。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

恶人花鸟市场 连载中
恶人花鸟市场
因疝
其实就是我单纯的想把离谱小众的要素堆到一起写小故事,以及每个故事后面会有一个反派视角,我个人还是比较喜欢反派视角的~
0.7万字6个月前
幻想王国物语I苏格星娜王国物语 连载中
幻想王国物语I苏格星娜王国物语
梦墨殿下
【中篇慢热文+群像+非遗+美食+日常+魔法等】苏格星娜王国境内,当恶魔再一次突破封印,出现于世间……理想是否终究会被残酷的现实所打败呢?看似......
38.7万字6个月前
快穿之功成身退 连载中
快穿之功成身退
稷昶
许久未更,惭愧。祝福读者们未来更好,前途似锦。禁未成年。
3.8万字6个月前
黑天使vs白恶魔 连载中
黑天使vs白恶魔
文大大
你相信世界有天使吗?反正我没见过,作者很懒自己看!!!
20.6万字6个月前
小舞是叶翘(叶浪浪) 连载中
小舞是叶翘(叶浪浪)
叶清浪
小舞是红叶也是叶翘主叶翘长明宗!无cp!
0.1万字6个月前
无机杀手在战锤 连载中
无机杀手在战锤
至尊之王克雷尔
就在V以为自己要死了时,一群神秘的救星救了她,众人也来到了一个未知的世界……
0.1万字6个月前