数学联邦政治世界观
超小超大

Mycielski定理

定理(Mycielski):设Ⅹ 为一波兰空间, R ⊆ Ⅹ × X 是其上的一个meager的等价关系,则存在一个闭的perfect子集 C ⊆ X ,使得 C 中元素两两 R-不等价。

Proof:假设Dₙ ⊆ Ⅹ × X 为一列稠密开集,使得 R∩∩Dₙ=∅ 。

下面我们构造一个从 2ω 到非空开集的映射 σ ↦ Vσ 使得:

───

1. 对每个 σ ∈ α<ω,Vσ⁀i ⊆ Vσ,其中 i ∈ {0,1} 。

2. 对每个 σ ∈ 2<ω , diam(Vσ) ≤ 2⁻|σ|。

3. 对每个 n ,以及 σ,τ ∈ 2ⁿ⁺¹ ,如果 σ ≠ τ ,则 Vσ × Vτ ⊆ ∩ Dₙ 。

m≤n

令V〈·〉=X 。现在假设对每个 σ ∈ 2ⁿ ,Vσ 都已经定义好了,现在取 V' ⊂ Vσ 使得

────

V' ⊆ Vσ ,且 diam(V') ≤ 2⁻ⁿ⁻¹ ,考察 V' × V' ∩∩ Dₙ

m≤n

,这是一个非空开集,取 Vσ⁀0,Vσ⁀1 使得 ∅ ≠ Vσ⁀0 × Vσ⁀1 ⊆ V' × V' ∩ ∩ Dₙ 。

m≤n

如果 σ,τ ∈ 2ⁿ 不相容,我们再对 Vσ⁀i,Vτ⁀i 做类似的操作,保证 Vσ⁀i × Vτ⁀i ⊆ Dₙ ,其中 i ∈ {0,1} 。

现在定义映射f:2ω → X 使得

x↦∩Vₓ⨡ₙ

n∈ω 则这个映射定义良好,因为 ∩ₙ Vₓ⨡ₙ

───

=∩ₙ Vₓ⨡ₙ 为单点集。而且这个映射是单射,因为如果 x ≠ y ∈ 2ω ,则对所有 n , (x,y) ∉ ∪ₙ ,从而 (x,y) ∉ R ,所以 x ≠ y 。 f 显然是连续的,因为 f⁻¹[Nₛ]={x ∈ 2ω:∃n Vₓ⨡ₙ ⊆ Nₛ} 从而像集 f[2ω] ⊆ X 就是一个perfect的闭集。闭性因为 2ω 的紧致性,无孤立点因为单射。其元素两两 R-不等价刚刚已经证明过了。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

你明白你是谁了吗? 连载中
你明白你是谁了吗?
意小芸
求鲜花作者在改文章具体是什么呢?我也不知道看一下就好了,第一次尝试写这种
0.2万字6个月前
血夜中的救赎 连载中
血夜中的救赎
华可可
她被爱人送给血族王子,而暴戾的血族王子却对她细心呵护。他们的故事将会如何呢,请听我娓娓道来
5.3万字6个月前
天平那端的爱 连载中
天平那端的爱
流璃纤
“我要回美国了。”“那……还回来吗?”“工作我已经辞了,公寓也交给中介租出去了。可能不会回来了。会留在美国。”“那,美国也挺好的,你一定可以......
14.2万字6个月前
小雅有只神兔子 连载中
小雅有只神兔子
布娃呀
小雅的兔子突然间会说话了,这是怎么一回事呢?(本书正文已完结,挖伏笔的文随时更)[年级第一文阁]
2.2万字6个月前
幻想村庄 连载中
幻想村庄
流钰
戏精的女主,玄幻的村子,不一样的故事,外加一只小宠。天马行空的想象,是奇幻的生活与她。也许会有一个他。
14.3万字6个月前
虫族:被丢弃的卡牌 连载中
虫族:被丢弃的卡牌
汐贝
殊遇获得了一张角色卡,卡牌里住着一只雄虫。雄虫长得可好看了,即使对什么都很冷淡,还是很可爱的。众所周知雄虫是很麻烦的生物,被摊上的雌虫都没有......
3.3万字6个月前