数学联邦政治世界观
超小超大

Mycielski定理

定理(Mycielski):设Ⅹ 为一波兰空间, R ⊆ Ⅹ × X 是其上的一个meager的等价关系,则存在一个闭的perfect子集 C ⊆ X ,使得 C 中元素两两 R-不等价。

Proof:假设Dₙ ⊆ Ⅹ × X 为一列稠密开集,使得 R∩∩Dₙ=∅ 。

下面我们构造一个从 2ω 到非空开集的映射 σ ↦ Vσ 使得:

───

1. 对每个 σ ∈ α<ω,Vσ⁀i ⊆ Vσ,其中 i ∈ {0,1} 。

2. 对每个 σ ∈ 2<ω , diam(Vσ) ≤ 2⁻|σ|。

3. 对每个 n ,以及 σ,τ ∈ 2ⁿ⁺¹ ,如果 σ ≠ τ ,则 Vσ × Vτ ⊆ ∩ Dₙ 。

m≤n

令V〈·〉=X 。现在假设对每个 σ ∈ 2ⁿ ,Vσ 都已经定义好了,现在取 V' ⊂ Vσ 使得

────

V' ⊆ Vσ ,且 diam(V') ≤ 2⁻ⁿ⁻¹ ,考察 V' × V' ∩∩ Dₙ

m≤n

,这是一个非空开集,取 Vσ⁀0,Vσ⁀1 使得 ∅ ≠ Vσ⁀0 × Vσ⁀1 ⊆ V' × V' ∩ ∩ Dₙ 。

m≤n

如果 σ,τ ∈ 2ⁿ 不相容,我们再对 Vσ⁀i,Vτ⁀i 做类似的操作,保证 Vσ⁀i × Vτ⁀i ⊆ Dₙ ,其中 i ∈ {0,1} 。

现在定义映射f:2ω → X 使得

x↦∩Vₓ⨡ₙ

n∈ω 则这个映射定义良好,因为 ∩ₙ Vₓ⨡ₙ

───

=∩ₙ Vₓ⨡ₙ 为单点集。而且这个映射是单射,因为如果 x ≠ y ∈ 2ω ,则对所有 n , (x,y) ∉ ∪ₙ ,从而 (x,y) ∉ R ,所以 x ≠ y 。 f 显然是连续的,因为 f⁻¹[Nₛ]={x ∈ 2ω:∃n Vₓ⨡ₙ ⊆ Nₛ} 从而像集 f[2ω] ⊆ X 就是一个perfect的闭集。闭性因为 2ω 的紧致性,无孤立点因为单射。其元素两两 R-不等价刚刚已经证明过了。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

海的尾声 连载中
海的尾声
融铸
女主是人鱼,男主是人类,两人是青梅竹马,男主因为一次意外瞎了眼,男女主慢慢对女主产生感情,可他们终究不能在一起,不仅来自父母的压力,也是因为......
0.1万字1个月前
四叶草之国 连载中
四叶草之国
知楠楠
承接上一部四叶草五传的剧情,这次的剧情是四叶草五传前往四叶草之国找到了黑暗势力的来源并将其打败的故事
5.0万字1个月前
快穿:恶役女配攻略计划 连载中
快穿:恶役女配攻略计划
叶深深深
她是红颜祸水,是他们心尖上的黑月光。一、【修仙文里的娇纵女配】(bg完结)二、【ABO星际文中的骄纵女配】(gb完结)三、【电竞文中的野王女......
18.6万字1个月前
清冷校花的所有物 连载中
清冷校花的所有物
忧郁小锤少
giantess系列文章Q群:355392666封面背景:不时轻声地以俄语遮羞的邻座艾莉同学
0.3万字4周前
浩海空灵 连载中
浩海空灵
咸鱼梦szd
融灵儿初到异世对什么都不上心的她,唯独对吃的没有抵抗力。尤其是鱼,,,这是一个为了一口鱼把自己卖了还帮人数钱的故事。
7.4万字4周前
冰窟求生:我有隐藏提示系统 连载中
冰窟求生:我有隐藏提示系统
月落之海
『已完结』全国人民来到了冰窟求生的世界,而我们的主角却有隐藏提示,但他似乎跟自己有很大的牵连......咳咳....多说无益,请移正文
4.0万字4周前