数学联邦政治世界观
超小超大

Galois 群的上同调群 (4-3)

B¹(G,A)=lim d*₀

={ξ:G → A│∃α ∈ A s.t σξ=α – ασ(∀σ ∈ G)}, (3)

Z¹(G,A)=ker d*₁

={ξ:G → A│(σ₁σ₂)ξ=(σξ₁)σ₂+σξ₂(∀σ₁,σ₂∈G)}. (4)

这样,我们得到了群 G 的一维上同调群的表达式

H¹(G,A)=Z¹(G,A)/B¹(G,A),

其中 Z¹(G,A) 和 B¹(G,A) 如 (3) 和 (4) 式所示。

Galois 群的一维上同调群

先证明一个引理。

引理 1. 设 K/F 是有限 Galois 扩张,则 Galois 群 Gal(K/F) 的元素 σ₁,. . .,σₙ 是 K-线性无关的,即:如果 α₁,. . .,αₙ∈K 使得

α₁xσ¹+· · ·+αₙxσⁿ=0 (∀x∈K), (5)

则 α₁=· · ·=αₙ=0。

证明. 假若存在不全为零的 α₁,. . .,αₙ∈K 使得 (5) 式成立,设 m 是使得 (5) 式成立的最小项数,即存在 K 中的不全为零的元素 b₁,. . .,bₘ 使得

b₁xσᵢ₁+· · ·+bₘxσᵢₘ=0 (∀x∈K), (6)

并且 c₁xσⱼᵢ+· · ·+cₘ₋₁xσⱼₘ₋₁=0 (∀x∈K) 蕴含着 c₁=· · ·=cₘ₋₁=0。由于 σᵢ₁ ≠ σᵢ₂,所以存在 y∈K 使得 yσᵢ₁ ≠ yσᵢ₂。将 xy 代入 (6) 式,得

b₁(xy)σᵢ₁+b₂(xy)σᵢ₂+· · ·+bₘ(xy)σᵢₘ=0 (∀x∈K).

以 yσᵢ₁ 乘 (6) 式,得

b₁(xy)σᵢ₁+b₂ yσᵢ₁ xσᵢ₂+· · ·+bₘ yσᵢ₁ xσᵢₘ=0 (∀x∈K).

以上两式相减,得

b₂(yσᵢ₁ – yσᵢ₂)xσᵢ₂+· · ·+bₘ(yσᵢ₁ – yσᵢₘ)xσᵢₘ=0 (∀x∈K).

其中 xσᵢ₂ 的系数 b₂(yσᵢ₁ – yσᵢ₂) ≠ 0,这矛盾于 m 的最小性。 ▢

设K/F 是 Galois 扩张,则 K×=K\{0}(作为乘法群)在 Gal(K/F) 自然的作用下(即对于 σ ∈ Gal(K/F) 和 x ∈ K×,定义 σ 在 x 上的作用 xσ 为 xσ)是 ℤ[Gal(K/F)] 模。于是可以考虑 Gal(K/F) 的取值在 K× 中的上同调群。

定理 1. 设 K/F 是有限 Galois 扩张,则 H¹(Gal(K/F),K×)={1}。

证明. 记 G=Gal(K/F)。只要证明 Z¹(G,K×) ⊆ B¹(G,K×)。设 ξ ∈ Z¹(G,K×),则由 (4) 式,

(στ)ξ=(σξ)τ · τξ (∀σ,τ ∈ G). (7)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无垠虚幻 连载中
无垠虚幻
小福叠
在一个普通的早晨,在不同地区,同时在地铁上的九人意外进入了异世界——“无垠虚幻”。他们分别是高中刚毕业的谢浮白;海归博士南宫秋;企业高层领导......
0.9万字9个月前
新帝 连载中
新帝
Wt.sn.
茵德安即将要登上皇位,可她并不想登上这人人都争的皇位。[可我并不想当王啊!想当王的是她!]可不管茵德安怎么喊这个王位终究给了她。卡丝令,是茵......
0.3万字9个月前
念别离,归故里 连载中
念别离,归故里
寒墨竹心
第1章
0.1万字9个月前
辞月怜花 连载中
辞月怜花
梵琪
情爱几何,风花雪月,从他人之常情见世间之爱意
1.5万字9个月前
攻略男主我最行 连载中
攻略男主我最行
池尘
这个系统有点撩啊~
6.6万字9个月前
浅情人不知迷途归思云 连载中
浅情人不知迷途归思云
逗逗飞了
“阿浅,我肮脏恶劣,你是我的黎明曙光。”——边伯贤“纵使我把心掰碎了给你,你可曾心疼过我”——边伯贤“我想去带你看繁华盛景,许你一个永恒。”......
0.0万字9个月前