数学联邦政治世界观
超小超大

Galois 群的上同调群 (4-2)

定义 1. 对于 i>0,ker d*ᵢ 称为 G 的取值在 A 中的 i 维上闭链,记为 Zⁱ(G,A);im d*ᵢ₋₁ 称为 G 的取值在 A 中的 i 维上边缘,记为 Bⁱ(G,A);商群 Zⁱ(G,A)/Bⁱ(G,A) 称为 G 的取值在 A 中的 i 维上同调群,记为 Hⁱ(G,A)。G 的取值在 A 中的 0 维上同调群 H⁰(G,A) 定义为 ker d*₀ 。

一维上同调群的表达式

为了将上同调群清楚地表达出来,我们将Pᵢ 换一个写法。作为自由 ℤ[G] 模,Pᵢ 的基取为

{(σ₁σ₂ · · · σ₁,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1)│σ₁,. . .,σᵢ ∈ G}.

以下将 (σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1) 记为 [σ₁,. . .,σᵢ](P₀ 的基记为 [ ])。在此记号下,自由化解序列中的模同态 dᵢ₋₁ 在基上的作用为

[σ₁,σ₂,. . .,σᵢ]ᵈⁱ⁻¹

=(σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1)ᵈⁱ⁻¹

=(σ₂ · · · σᵢ,σᵢ₋₁σᵢ,σᵢ,1)

+∑(–1)ʲ⁻¹ (σ₁σ₂ · · · σᵢ,. . .,σⱼ₋₁ · · · σᵢ,σⱼ₊₁ · · · σᵢ,. . .,σᵢ,1)

ⱼ₌₂

+(–1)ⁱ(σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ)

=[σ₂,. . .,σᵢ]+∑(–1)ʲ⁻¹ [σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ] ⱼ₌₂

+(–1)ⁱ[σ₁,. . .,σᵢ₋₁]σᵢ.

于是,对于任一 φᵢ₋₁ ∈ Hom ℤ[G],有

[σ₁,σ₂,. . .,σᵢ] (d*ᵢ₋₁ φᵢ₋₁)

=([σ₁,σ₂,. . .,σᵢ]ᵈⁱ⁻¹)φᵢ₋₁

=[σ₂,. . .,σᵢ]φᵢ₋₁+∑(–1)ʲ⁻¹[σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ]φᵢ₋₁ ⱼ₌₂

+(–1)ⁱ([σ₁,. . .,σᵢ₋₁]σᵢ)φᵢ₋₁

=[σ₂,. . .,σᵢ]φᵢ₋₁+∑(–1)ʲ⁻¹[σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ]φᵢ₋₁ ⱼ₌₂

+(–1)ⁱ([σ₁,. . .,σᵢ₋₁]φᵢ₋₁)σᵢ.

具体写出 d*₀ 和 d*₁ 的表达式。对于任一 ξ ∈ Homℤ[G] (P₀,A) 以及 [σ] ∈ P₁,有

[σ](ξᵈ*¹)=[ ]ξ – ([ ]ξ)σ.

对于任一 ξ ∈ Homℤ[G] (P₁,A) 以及 [σ₁,σ₂] ∈ P₂,类似地有

[σ₁,σ₂](ξᵈ*¹)=[σ₂]ξ – [σ₁σ₂]ξ+([σ₁]ξ)σ₂.

由此可知

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

侦探林悦的日常生活 连载中
侦探林悦的日常生活
小小流星大大梦想
侦探林悦勇敢聪慧。她先受委托寻找失踪丈夫,与神秘组织周旋后成功解救。接着又接手女孩失踪案,从学校到老城区,最终救出女孩。林悦在案件中尽显侦探......
新书6个月前
极航:盛夏 连载中
极航:盛夏
famy
20朵花花加更一章,10个金币加更一章,20个评论加更一章,开通一个会员加更一章,10个收藏加更一章
0.8万字6个月前
娱乐圈:一帮超雄小小孩 连载中
娱乐圈:一帮超雄小小孩
洁厕灵三金
HICE三代十多个小孩子全是精力旺盛的超雄!老板柏乐时and工作人员:已死,勿念
0.1万字5个月前
吉行一日 连载中
吉行一日
众生之上
后来啊,才发现我们原来早以成为了我们记忆中最平凡的模样……
0.9万字5个月前
快穿:女配的进阶之路 连载中
快穿:女配的进阶之路
一打红酒
立志成为盛世白莲的影后苏柔儿,在行车时不幸被一块广告牌砸中,被迫绑定了女配系统。为了重生,苏柔儿在不同的剧本中扮演女配,攻克男主以完成任务。......
5.6万字5个月前
少年人休逞口舌之利 连载中
少年人休逞口舌之利
我是狗子子子
女主有沈梦瑶,王奕,周诗雨,袁一琦,蒋芸,王晓佳
0.6万字5个月前