Jacobson猜想原表述:对于一个左诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。
但1965年该表述被证伪,目前仍然open的是以下表述:
“对于一个双边诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。”
我对该猜想比较感兴趣。
刚翻到一篇有意思的文献,声称,如果幺环R满足如下条件之一,那么J^ω=0:
1、R是左主理想区且有一个左Motria对偶;
2、R是双边诺特环,且它作为自己的左模在离散拓扑下线性紧致。
参考文献:Claudia Menini,Jacobson’s Conjecture, Morita Duality
and Related Questions,Journal of Algebra 103, 638-655 (1986)
抽象代数:环论:
For a ring Rwith Jacobson radical J,the nonnegative powers Jⁿ are defined by using the product of ideals.
Jacobson's conjecture:lnaright-and-left Noetherian ring,∩Jⁿ={0}.
n∈ℕ
3. Sᴏᴍᴇ Fᴜʀᴛʜᴇʀ Rᴇsᴜʟᴛs
In this section we will get some more results about Jacobson's conjecture and we will show that, in some particular cases,it holds.
3.1. LEMMA. Let R be α ring,J=J(R),Jω=Jω(R). Suppose thαt ʀR is
I.c.d.αnd ʀJ is finitely generαted. Then
Jω=JωJ.
Proof.Let J=Rα₁+· · ·+ Rαₙ. For every left R-module M. let M⁽ⁿ⁾ denote the direct sum of n-copies of M. Define
f: ʀR⁽ⁿ⁾ → ʀR
by setting
(r₁,...,rₙ)f=r₁α₁+· · ·+rₙαₙ, r₁,...,rₙ∈R.
Then f is a morphism of left R-modules and
(∩(JᵏR⁽ⁿ⁾)f=((Jω)⁽ⁿ⁾)f=JωJ.
ₖ
As ʀR is l.c.d.,by Satz 1 of [L] it is:
(∩(JᵏR⁽ⁿ⁾)f=∩((JᵏR⁽ⁿ⁾)f=Jω.
ₖ ₖ
3.2. Cᴏʀᴏʟʟᴀʀʏ. Let R be α ring,J=J(R), Jω=Jω(R).Assume thαt ʀR is I.c.d. αnd thαt both ʀJ αnd Jωʀ αre finitely generαted. Then Jω=0.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。