数学联邦政治世界观
超小超大

关于Jacobson猜想 (3-2)

Proof. By Lemma 3.1 Jω=Jωly now Nakayama’s Lemma.

Recall that a ring R is said to have a left Moritα duαlity if both ʀR and the minimal cogenerator ʀK of R-Mod are l.c.d.

3.3. Remαrk. Corollary 3.2 holds in particular when R is a noetherian ring (on both sides) having a left Morita duality. This result has been already proved, in another way,in [J4].

3.4.Pʀᴏᴘᴏsɪᴏɴ. Let R be α ring J=J(R),Jω=Jω(R). Suppose thαt R is α locαl (i.e.,R/J is α diυision ring),J=Rz,ʀJω is finitely generαted αnd R hαs α left Moritα duαlity. Then there exists αn n∈ℕ such thαt JⁿJω=0.

Proof. Let ʀK be the minimal cogenerator of R-Mod and suppose that for every n∈ℕ,there exists

eₙ∈Ann ᴋ(JⁿJω)\Ann ᴋ(Jⁿ⁻¹Jω).

For every n∈ℕ let ēₙ=eₙ+Ann ᴋ(Jω)∈ K/Ann ᴋ(Jω).Then the elements ēₙ yield α bαsis for α free left R/Jω module. In fact note that JωJωeₙ=0 and assume that

∑ rₙēₙ=0 with rₙ∈R,rₜ ∉ Jω.

ₙ₌₁

Then rₜ eₜ ∈ Ann ᴋ(Jᵗ⁻¹Jω) and hence Jᵗ⁻¹ Jωrₜ eₜ =0.

Since rₜ ∉ Jω and R is local,there exist an l∈ℕ and an invertible element ε of R such that

rₜ=εzˡ.

Then Jωrₜ=Jωεzˡ=Jωzˡ and, by Proposition 3.1,Jωrₜ=Jω.Thus Jᵗ⁻¹Jωeₜ=0. Contradiction.

Since K/Ann ᴋ(Jω) is an l.c.d. left R-module this cannot happen. Hence there exists an n such that

Ann ᴋ(JⁿJω)=Ann ᴋ(Jⁿ⁺¹Jω).

652 ᴄʟᴀᴜᴅɪᴀ ᴍᴇɴɪɴɪ

Thus,as ʀK is a cogenerator of R-Mod,we get

JⁿJω=Jⁿ⁺¹Jω.

Nakayama’s Lemma implies that JⁿJω=0.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

漫逸的狂徒 连载中
漫逸的狂徒
屠星_Sl
你正在看的小说,包含**镜头,激烈言辞,**主题,闪烁画面,以及**高涨的恶魔们……是的,这些是为成熟读者提供的。请自行决定是否观看,如有不......
12.3万字4周前
多米诺骨牌(正片) 连载中
多米诺骨牌(正片)
杨梅咩
多米诺骨牌的正片!都是oc
0.2万字4周前
落与颍川 连载中
落与颍川
应爨
(已签约)上古时期,有一位神明名唤应川,他因天地万物而生,身下一名弟子叫落,应川有一神物灵丹,至强之物,人人而垂涎之物,为了护弟子,护天下苍......
3.7万字4周前
如果历史是一群喵——终点之后,起点之前 连载中
如果历史是一群喵——终点之后,起点之前
V电压表_原名安夏
读前必看!!!纯原创本人代表作(?人设一秒崩掉(?,部分ooc预警恶人化的缘故有些人性格有改变,属私设私设挺多的,旁白也不少,不喜自退第二季......
3.0万字4周前
潜执(1)执法进入坏蛋 连载中
潜执(1)执法进入坏蛋
177***815_3199497214
0.2万字4周前
矢渝无偿封面铺(不接暂关) 连载中
矢渝无偿封面铺(不接暂关)
纪榆_
以下是无偿要求↓封面要求关注大号海棠蚀_,收藏《快穿:满级大佬她又在虐渣》,快穿那里付120朵花花。横封+40朵花花,未完待续80朵花花,立......
0.1万字4周前