数学联邦政治世界观
超小超大

关于Jacobson猜想 (3-2)

Proof. By Lemma 3.1 Jω=Jωly now Nakayama’s Lemma.

Recall that a ring R is said to have a left Moritα duαlity if both ʀR and the minimal cogenerator ʀK of R-Mod are l.c.d.

3.3. Remαrk. Corollary 3.2 holds in particular when R is a noetherian ring (on both sides) having a left Morita duality. This result has been already proved, in another way,in [J4].

3.4.Pʀᴏᴘᴏsɪᴏɴ. Let R be α ring J=J(R),Jω=Jω(R). Suppose thαt R is α locαl (i.e.,R/J is α diυision ring),J=Rz,ʀJω is finitely generαted αnd R hαs α left Moritα duαlity. Then there exists αn n∈ℕ such thαt JⁿJω=0.

Proof. Let ʀK be the minimal cogenerator of R-Mod and suppose that for every n∈ℕ,there exists

eₙ∈Ann ᴋ(JⁿJω)\Ann ᴋ(Jⁿ⁻¹Jω).

For every n∈ℕ let ēₙ=eₙ+Ann ᴋ(Jω)∈ K/Ann ᴋ(Jω).Then the elements ēₙ yield α bαsis for α free left R/Jω module. In fact note that JωJωeₙ=0 and assume that

∑ rₙēₙ=0 with rₙ∈R,rₜ ∉ Jω.

ₙ₌₁

Then rₜ eₜ ∈ Ann ᴋ(Jᵗ⁻¹Jω) and hence Jᵗ⁻¹ Jωrₜ eₜ =0.

Since rₜ ∉ Jω and R is local,there exist an l∈ℕ and an invertible element ε of R such that

rₜ=εzˡ.

Then Jωrₜ=Jωεzˡ=Jωzˡ and, by Proposition 3.1,Jωrₜ=Jω.Thus Jᵗ⁻¹Jωeₜ=0. Contradiction.

Since K/Ann ᴋ(Jω) is an l.c.d. left R-module this cannot happen. Hence there exists an n such that

Ann ᴋ(JⁿJω)=Ann ᴋ(Jⁿ⁺¹Jω).

652 ᴄʟᴀᴜᴅɪᴀ ᴍᴇɴɪɴɪ

Thus,as ʀK is a cogenerator of R-Mod,we get

JⁿJω=Jⁿ⁺¹Jω.

Nakayama’s Lemma implies that JⁿJω=0.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

异世界的哥哥竟是魔王 连载中
异世界的哥哥竟是魔王
高V不会
平平无奇的人类社畜舒(弟弟,27岁)某天穿越了。摆烂人被迫魔界求生,竟遇到和哥哥少年时一模一样的魔王忧(外表16岁,实际???),还是个熊孩......
17.1万字8个月前
师姐的团宠萌小弟 连载中
师姐的团宠萌小弟
没尾巴的熊熊
先天不足,呆笨有余聪慧不足,外貌土肥圆。都以为他这辈子就是个卑贱的弃儿,却不想竟被天下第一仙门玉清宫的老祖捡去,被玉清宫的仙子姐姐们宠上了天......
10.0万字8个月前
语录(清) 连载中
语录(清)
啊,天才!
更文不怕字数少,慢慢码。佛系码字,不会弃文
7.4万字8个月前
繁星的相遇 连载中
繁星的相遇
橙赂
在这里说一下,女主是林微,男主是顾申,这是本从古代修仙穿越到现代的一本书男女主本是修仙界的老祖,而且还道侣女主在某一天被人暗算穿越到了现代…......
1.1万字8个月前
孟婆,请给我来碗汤 连载中
孟婆,请给我来碗汤
顾城柒少
孟婆的孟婆汤可以让人忘却前尘,包括美好的爱情月老的红线则是让有情终成眷属,至死不渝按理说,这两人应该毫无交集才对可是为什么在得知孟婆死讯的时......
30.7万字8个月前
妖缘志异 连载中
妖缘志异
淡溪桥
简介正在更新
33.6万字8个月前