数学联邦政治世界观
超小超大

Galois 群的上同调群 (4-1)

B¹(G,A)={ξ:G → A│∃α ∈ A s.t. σξ=α – ασ (∀σ ∈ G)},

Z¹(G,A)={ξ:G → A│(σ₁σ₂)ξ=(σξ₁)σ₂+σξ₂(∀σ₁,σ₂ ∈ G)}.

目录

群的上同调

一维上同调群的表达式

Galois 群的一维上同调群

本文我们介绍群的上同调群的基本概念,并证明域的有限 Galois 扩张的 Galois 群的取值在域中的一维上同调群是平凡的。

参考文献:北京大学出版社《抽象代数Ⅱ》,徐明曜、赵春来编著。

群的上同调

首先我们介绍群的上同调。设G 是群,令 Gⁱ⁺¹=G × G × · · · × G(i+1 个 G),并令 Pᵢ=ℤ[Gⁱ⁺¹]。定义 G 在 Gⁱ⁺¹ 上的作用为 (σ₀,. . .,σᵢ)σ=(σ₀σ,. . .,σᵢσ),其中 σ∈G,(σ₀,. . .,σᵢ) ∈ Gⁱ⁺¹。这个作用的 ℤ-线性扩张给出群环 ℤ[G] 在 Pᵢ 上的作用,使得 Pᵢ 成为自由 ℤ[G] 模,其基可取为

{(σ₀,σ₁,. . .,σᵢ₋₁,1)│(σ₀,. . .,σᵢ₋₁)∈Gⁱ}.

对于任一 i ≥ 0,定义映射

dᵢ:Pᵢ₊₁ → Pᵢ,

(σ₀,. . .,σᵢ) ↦∑(–1)ʲ (σ₀,. . .,σⱼ₋₁,σⱼ₊₁,. . .,σᵢ). ⱼ₌₀

易见dᵢ 是 ℤ[G] 模同态。考虑序列

d₂ d₁ d₀ ε

· · · → P₂ → P₁ → P₀ → ℤ → 0, (1)

其中 ε 的定义为

ε:P₀(=ℤ[G]) → ℤ,

ₘ ₘ

∑ αⱼσⱼ ↦ ∑ αⱼ (αⱼ ∈ ℤ,σⱼ ∈ G).

ⱼ₌₁ ⱼ₌₁

如果将 ℤ 视为平凡 ℤ[G] 模(即 G 中任一元素在 ℤ 上的作用都是 ℤ 上的恒同映射),则 ε 是 ℤ[G] 模同态。于是 (1) 是 ℤ[G] 模序列。不难验证序列 (1) 是正合的。称序列 (1) 为 ℤ 作为平凡 ℤ[G] 模的自由化解。

现在设 A 为任一 ℤ[G] 模。将函子 Homℤ[G](·,A)应用于序列 (1)(除去最后一项),我们得到序列

d*₂ d*₁ d*₀

· · · ← Hom(P₂,A) ← Hom(P₁,A) ← Hom(P₀,A). (2)

此序列一般而言不再是正合的。但是,不难看出对于任一 i=0,1,. . .,有 d*ᵢd*ᵢ₊₁=0,即 im d*ᵢ ⊆ ker d*ᵢ₊₁ 。我们称序列 (2) 为一个上链复形。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星耀之爱破混沌 连载中
星耀之爱破混沌
萧逸老婆985739
沐芸:放肆,本尊不是你口中的夜歆,本尊乃神界神尊沐芸君烨寒:都是我的错,我为什么就没有保护好你
0.1万字9个月前
四维:无主之地 连载中
四维:无主之地
凌墨双
男孩卡迪和妹妹,妈妈相依为命。但是在11岁那年,妈妈前往四维世界调查时,突然失踪,他和妹妹一同前去寻找妈妈,却被告知妹妹不是人类。为了找到妈......
1.2万字9个月前
白月光手拿复活剧本 连载中
白月光手拿复活剧本
是有点烦a
第一个故事手拿剧本的白月光能战胜主角光环的女主嘛,让我们拭目以待。第二个故事腹黑城府商界大佬×伪白莲复仇女议员,一切尽在掌握,伪白莲如何拿捏......
17.1万字9个月前
我命里缺你 连载中
我命里缺你
木卯即柳
古代伪宅斗小甜文!
8.3万字9个月前
黑莲花在线攻略1 连载中
黑莲花在线攻略1
桔裳玄冥
人一生大概会遇见五十五万人,要打破万分之一的概率,一个人才会坐在你身边。冥王娶妻——谁说冥王非得是男人,这些愚蠢的村民啊。末世之城——请告诉......
7.4万字9个月前
使魔大人请上座 连载中
使魔大人请上座
该用户已注销
努力不一定会获得成功,但不努力你一定是条咸鱼!作为圣魔道学院召唤系最没资质、也没什么背景,召唤六百多次却一直失败的废材学员,花间神月仍不言败......
12.8万字9个月前