数学联邦政治世界观
超小超大

数学定理(二) (2-1)

dually Dedekind infinite定理

我们称一个集合α 是dually Dedekind infinite的,当且仅当存在 α 到 α+1 的满射,其中 0 ∉ α 。

集合α 是power Dedekind finite的,当且仅当不存在 ω 到 Pα 的单射。

定理:假设α=∪αₙ

n∈ω

, α 是dually Dedekind infinite的,αₙ 都是power Dedekind finite的,那么存在满射 g:α → α+1 (其中 0 ∉ α )和严格单增自然数序列 i₀<i₁<· · · 满足 g⁻⁽ⁿ⁺¹⁾ (0) ⊆ αᵢₙ。

证明:证明无需AC。由于 α 是dually Dedekind infinite的,令 f:α → α+1 是满射。

引理1 :对于任意自然数 m,n ,存在 k∈ω 使 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ 。否则,假设 n 满足“任意自然数 k 都有 f⁻ᵏ[αₘ] ⊆ α₀∪· · ·∪αₙ ”,因此 P(α₀∪· · ·∪αₙ) ⊇ {f⁻ᵏ[αₘ]:k∈ω};由于 k ≠ l → fˡ[αₘ] ∩fᵏ[αₘ]=∅,因此 P(α₀∪· · ·∪αₙ) 有可数子集;但是任意有穷个power Dedekind finite集合的并仍然是power Dedekind finite的,因此 P(α₀∪· · ·∪αₙ) 没有可数子集,矛盾,反证存在 k∈ω 满足 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ ,引理成立。

现在令i₀=min{n:f⁻¹(0)∩αₙ ≠ ∅} ,令 c₀=f⁻¹(0)∩αᵢ₀,根据引理 1 可知存在 i₁=min{n:∃k,f⁻ᵏ[c₀]∩αₙ ≠ ∅} 、 k₁=min {n:f⁻ⁿ[c₀] ∩αᵢ₁ ≠ ∅} 和 c₁=f⁻ᵏ¹[c₀]∩αᵢ₁。仍然根据引理,可继续定义 i₂,k₂,c₂,i₃,· · · ,即 iₘ₊₁=min {n:∃k,f⁻ᵏ[cₘ]∩αₙ ≠ ∅} 、kₘ₊₁=min {n:f⁻ⁿ[cₘ]∩αᵢₘ₊₁ ≠ ∅} 和 cₘ₊₁=f⁻ᵏᵐ⁺¹ [cₘ]∩αᵢₘ₊₁ 。这样我们就得到了一组严格单增的自然数序列 (iₙ) n∈ω,并且当 n>m 时有 fˡᵐ [cₙ] ⊆ cₙ₋ₘ ⊆ αᵢₙ₋ₘ,其中 lₘ=∑kᵢ 。

i≤m

令c₀⁽ⁿ⁾=fˡⁿ [cₙ] ,则有 c₀⁽ⁿ⁾ ⊇ c₀⁽ⁿ⁺¹⁾,下面证明存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾:否则,存在 {c₀⁽ⁿ⁾:n<ω} 的无穷子集 {c₀⁽ᶠ⁽ⁿ⁾⁾:n<ω} 满足 c₀⁽ᶠ⁽⁰⁾⁾ ⊃ c₀⁽ᶠ⁽¹⁾⁾ ⊃ · · · ,其中 f 是自然数集上的单增函数,因此 Pc₀ 有可数子集,但 c₀ ⊆ αᵢ₀ ,因此 c₀ 是power Dedekind finite的,矛盾,反证存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾ 。将上述的 c₀⁽ᵐ⁾ 记为 b₀ ,则对于任意 cₙ 都有 fˡⁿ [cₙ] ⊇ b₀ 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字5个月前
神思瞬,下笔之 连载中
神思瞬,下笔之
遥遥余无期
神游间所见闻,见趣,下笔(练习)【作者认为这已经废了】
2.0万字6个月前
自编猫武士之为爱 连载中
自编猫武士之为爱
i落日
爱有千种万种,是青春一如往事如梭,是克制有如含苞待放,是朦胧恰似月影彷徨……——光明黑暗,如何抉择?我们因世间的阴差阳错而相遇,却为爱汇聚。......
3.5万字5个月前
樱之花时归末 连载中
樱之花时归末
婴可可
想变个新鲜剧情可随机变……嘿嘿现在我没什么灵感,什么样子的剧情我都可能有
5.4万字5个月前
穿越兽世,帅哥,一起生活吧! 连载中
穿越兽世,帅哥,一起生活吧!
樱花洛飘飘
来一次异时空的恋情,让你感受到兽世小哥哥那清纯的爱情。
8.2万字5个月前
异种人培养计划 连载中
异种人培养计划
书无白
二十四位始祖降临人间,却不为人,只为己。故事流传下来的不仅仅是故事。更是一种精神。“如果再来一次,我依旧会被你所骗。”“因为我爱你,根深蒂固......
4.4万字5个月前