数学联邦政治世界观
超小超大

数学定理(一) (2-1)

power Dedekind infinite cardinal定理

以下内容均不假设选择公理。

称一个集合α 是power Dedekind infinite,当且仅当 Pα ≥ ω。

引理:集合α 是power Dedekind infinite,当且仅当 α ≥* ω ,其中 x ≥*y 当且仅当存在从 x 到 y 的满射 ⊣

定理:假设α 是power Dedekind infinite的且 b ≤* α ,那么 ω ≤* b∨b+ω ≤* α 。

证明:假设ω ≰* b,定义 g:α → b 是满射。由引理知存在 f:α → ω 是满射,现在求存在满射 σ:α → b+ω 。

定义αₙ=f⁻¹(n) ⊂ α 和 bₙ=g[αₙ] ⊆ b,则 i ≠ j → αᵢ ∩ αⱼ=∅ 且 α=∪αₙ 。

假设∀n∃m>n(bₘ₊₁ ⊈ b₀∪· · ·∪bₙ),那么定义 φ:∪bᵢ → ω

i

,令 φ(x)=n 当且仅当 n=min {k:x∈bₖ} ,则 φ 是从 ∪bᵢ → ω 的满射

i

,这与 ω ≰* b矛盾,反证存在自然数 n 满足 b₀∪· · ·∪bₙ ⊇ ∪bᵢ

i∈ω

,因此 b=b₀∪· · ·∪bₙ 。

定义ᵇ'⁰⁼ᵇ⁰,ᵇ'ⁱ⁺¹⁼ᵇⁱ⁺¹ ⁻ ∪bₖ

k≤i

,则 b'ᵢ∩b'ⱼ=∅ 。由于对于任意 k , g[αₖ] ⊆ b'₀∪· · ·∪b'ₙ ,因此我们可以把 αₖ 划为 n+1 个不相交的子集 α⁰ₖ,· · · αⁿₖ,其中 g[αⁱₖ] ⊆ b'ᵢ 。对于任意 0 ≤ i ≤ n ,令 cᵢ=∪αⁱₖ

k∈ω

,可证 cᵢ∩cⱼ=∅ 且 α=c₀∪· · ·∪cₙ ,因此存在 i ≤ n 满足 f[cᵢ] 是 ω 的可数子集。

下面证明存在k 使得 ᵇ'ⁱ⁼∪g[αⁱₙ]:

n≤k

否则 ∀k,b'ᵢ ⊃ ∪g[αⁱₙ]

n≤k

,那么就存在 b 到 ω 上的满射,这与 b ≱* ω 矛盾,因此存在 k 使得 b'ᵢ=∪g[αⁱₙ] 。

n≤k

由于对于任意自然数 l 都有 f[αⁱₙ]=l ,因此 f[∪αⁱₗ]是 ω 的可数子集。

l>k

令 ʰ:ᶠ[∪αⁱₗ] → ω 为双射。

l>k

到此定义满射σ:α → b+ω:假设 x∈cⱼ,j ≠ i,那么 σ(x)=g(x) ;假设 x∈∪αⁱₙ

n≤k

,那么 σ(x)=g(x) ;如果 x∈∪αⁱₙ ,

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

海坟 连载中
海坟
璞魚
没啥特别的
0.1万字1个月前
盗笔后续之侯明昊 连载中
盗笔后续之侯明昊
林婉1
简介正在更新
0.3万字4周前
文娱:偶像作曲人 连载中
文娱:偶像作曲人
婉婉不早安
【系统文+无cp+作曲】沈晴雨怎么也想不到自己一个还没大学毕业的大学生,能遇到这种机遇,被系统签约,成为3033年系统协会的公务员,不仅有六......
7.2万字4周前
ky文 连载中
ky文
思君如流水何有穷已时
挠XX
0.0万字4周前
猫武士——光明真相 连载中
猫武士——光明真相
luomi洛米
本文是猫武士——新希望的第三部。
2.6万字4周前
All美:别怕小孩,还有我们 连载中
All美:别怕小孩,还有我们
鸭子是个大美吕
《AII美:别怕……小孩,还有我们……》2022.9.3出版美梦璃,12岁少女,父母是生物学家,常年在国外,有一次生物实验室大爆炸,她的父母......
1.0万字4周前