power Dedekind infinite cardinal定理
以下内容均不假设选择公理。
称一个集合α 是power Dedekind infinite,当且仅当 Pα ≥ ω。
引理:集合α 是power Dedekind infinite,当且仅当 α ≥* ω ,其中 x ≥*y 当且仅当存在从 x 到 y 的满射 ⊣
定理:假设α 是power Dedekind infinite的且 b ≤* α ,那么 ω ≤* b∨b+ω ≤* α 。
证明:假设ω ≰* b,定义 g:α → b 是满射。由引理知存在 f:α → ω 是满射,现在求存在满射 σ:α → b+ω 。
定义αₙ=f⁻¹(n) ⊂ α 和 bₙ=g[αₙ] ⊆ b,则 i ≠ j → αᵢ ∩ αⱼ=∅ 且 α=∪αₙ 。
ₙ
假设∀n∃m>n(bₘ₊₁ ⊈ b₀∪· · ·∪bₙ),那么定义 φ:∪bᵢ → ω
i
,令 φ(x)=n 当且仅当 n=min {k:x∈bₖ} ,则 φ 是从 ∪bᵢ → ω 的满射
i
,这与 ω ≰* b矛盾,反证存在自然数 n 满足 b₀∪· · ·∪bₙ ⊇ ∪bᵢ
i∈ω
,因此 b=b₀∪· · ·∪bₙ 。
定义ᵇ'⁰⁼ᵇ⁰,ᵇ'ⁱ⁺¹⁼ᵇⁱ⁺¹ ⁻ ∪bₖ
k≤i
,则 b'ᵢ∩b'ⱼ=∅ 。由于对于任意 k , g[αₖ] ⊆ b'₀∪· · ·∪b'ₙ ,因此我们可以把 αₖ 划为 n+1 个不相交的子集 α⁰ₖ,· · · αⁿₖ,其中 g[αⁱₖ] ⊆ b'ᵢ 。对于任意 0 ≤ i ≤ n ,令 cᵢ=∪αⁱₖ
k∈ω
,可证 cᵢ∩cⱼ=∅ 且 α=c₀∪· · ·∪cₙ ,因此存在 i ≤ n 满足 f[cᵢ] 是 ω 的可数子集。
下面证明存在k 使得 ᵇ'ⁱ⁼∪g[αⁱₙ]:
n≤k
否则 ∀k,b'ᵢ ⊃ ∪g[αⁱₙ]
n≤k
,那么就存在 b 到 ω 上的满射,这与 b ≱* ω 矛盾,因此存在 k 使得 b'ᵢ=∪g[αⁱₙ] 。
n≤k
由于对于任意自然数 l 都有 f[αⁱₙ]=l ,因此 f[∪αⁱₗ]是 ω 的可数子集。
l>k
令 ʰ:ᶠ[∪αⁱₗ] → ω 为双射。
l>k
到此定义满射σ:α → b+ω:假设 x∈cⱼ,j ≠ i,那么 σ(x)=g(x) ;假设 x∈∪αⁱₙ
n≤k
,那么 σ(x)=g(x) ;如果 x∈∪αⁱₙ ,
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。