ⱼ₌₁ 1 – e⁻ˣʲ
That is,
ₙ xⱼ
χy=∫ₓ∏((1+y · e⁻ˣʲ) ───).
ⱼ₌₁ 1 – e⁻ˣʲ
This finishes the calculation.
For y=0。the above formula tells us that
χ₀=χ(X,𝓞 )=∫ₓ Td(X).
Indeed this is a special case of Hirzebruch-Riemann-Roch theorem,as we will see later.
For y=–1 and X an n-dimensional compact Kähler manifold,this yields the Gauss-Bonnet formula
ₙ
χ–1=∑(–1)ᴾ⁺q hᴾ,q=e(X)=∫ₓ∏ xⱼ=∫ₓ cₙ(x). ⱼ₌₁
For y=1 and X a 2n-dimensional compact Kähler manifold,the χy-genus is
ₙ xⱼ
χ₁=χ(X,⨁Ωᴾₓ)=∫ₓ∏((1+eˉˣʲ)───)
ⱼ₌₁ 1 – e⁻ˣʲ
=∫ₓL(X),
where L(X)=L(p(X)) is the L-class explained later. This is the Hirzebruch signature theorem.
19
4 Hirzebruch Signature Theorem
4.1 Multiplicative sequence
Let A be a fixed commutative ring with unit, and A* a graded A-algebra. Write AΠ for the ring of formal power series α₀+α₁+. . ., where αᵢ ∈ Aⁱ,and AΠ₀ for its subset containing elements with leading term 1. AΠ₀ form a group under multiplication.
Now consider a sequence of polynomials
K₁(x₁),K₂(x₁,x₂),K₃(x₁,x₂,x₃),. . .
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。