数学联邦政治世界观
超小超大

指标定理(四) (9-4)

One easily check that as before,ˉ∂ defines an elliptic complex of differential operators for each fixed p. This is called the Dolbeault complex. Let Hᴾ,q be the q-th cohomology group of this complex,and hᴾ,q be its dimension.

Definition 5 For fired p,χᴾ;=∑ⁿq₌₀(–1)q h ᴾ,q is defined to be the αnαlyticαl index of ˉ∂. χ⁰ is αlso cαlled the αrithmetic genus.

Now we would like to find what the topological index is by the index theorem. First set p=0.

__

∧qT*=AqT. By the calculations in the former subsection we have

ₙ ₙ

∑ch(∧ᵏT) · tᵏ=∏(1+teˣⁱ).

ₖ₌₀ ᵢ₌₁

18

Thus

χ⁰=〈((∑(–1)ⁱ · ch(∧ᵏT)

ᵢ₌₀

ₙ xⱼ 1

∏(─── · ───)),[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ 1 – e⁻ˣʲ

ₙ xⱼ

=〈∏(───)),[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ

=Td(T)[X]=Td(X).

For general p,define χy=∑ⁿₚ₌₀ χᴾ·yᴾ to be a formal linear combination of χᴾ. Formally χy is the analytical index of the elliptic complex (Cq,ˉ∂),whose direct summands consist of yᴾ copies of the p-th complex for each p, i.e. Cq=⨁ₚyᴾ · ∧ᴾ,q.

Thus

∑(–1)q ch(Cq)=∑(–1)q yᴾ ch(∧ᴾT*)ch(∧qT)

p,q

= (∑(–1)q ch(∧q T))(∑ yᴾch(∧ᴾT*))

q p

=∏(1 – eˣʲ)(1+ye⁻ˣʲ),

and consequently

ₙ xⱼ

χy=∏((1+y · e⁻ˣʲ) ───) [X].

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

天下第一甘愿做我心尖宠 连载中
天下第一甘愿做我心尖宠
南进
读者进来看简介在第一章
0.5万字1个月前
王秋儿和王冬儿穿越凤逆天下 连载中
王秋儿和王冬儿穿越凤逆天下
泪无翼
弃坑慎入
5.1万字4周前
二哈:爱上一只小凤凰 连载中
二哈:爱上一只小凤凰
倾雪涵致
一朝穿越到二哈有个师尊叫玄凌有个师叔叫慕泽有个仙尊叫晚宁有个舅舅叫夜沉有个凤凰叫薛蒙我是团宠叫溪月找个老公带回家(不拆官配)
6.9万字4周前
绯怜 连载中
绯怜
梓涟
7.0万字4周前
祭生诀之四界奇缘 连载中
祭生诀之四界奇缘
SSR小哥儿
这人很懒,啥都没写。
0.0万字4周前
快穿攻略任务:反派 连载中
快穿攻略任务:反派
雾满了爱意
江言枝每天都在做任务,只是为了挣钱,多点钱没什么不好。人沙雕爱好挣钱女主X白切黑任务目标。爱唱歌的男女主
8.7万字4周前