ⁿ ₙ
∑ch(∧ᵏE* ⨂ ℂ) · tᵏ=∏(1+te⁻ˣⁱ)(1+teˣⁱ). ᵢ₌₁
ₖ₌₀
Settingt=–1,we have
ₙ ₙ
∑ch(∧ᵏE* ⨂ ℂ) · (–1)ᵏ=∏(1 – e⁻ˣⁱ)(1 – eˣⁱ). ᵢ₌₁
ₖ₌₀
Thus for the de Rham complex defined for an oriented compact 2n-dimensional manifold,
ₘ
indₜ(d)=〈((∑(–1)ⁱ · ch(∧ⁱT* ⨂ ℂ) )
ᵢ₌₀
ₙ xⱼ 1
∏(─── · ───).[X]〉
ⱼ₌₁ 1 – e⁻ˣʲ 1– eˣʲ
ₙ
=〈(∏(1 – e⁻ˣⁱ)(1 – eˣⁱ)
ᵢ₌₁
ₙ xⱼ 1
∏ (─── · ───)),[X]〉
ⱼ₌₁ 1 – e⁻ˣʲ 1 – eˣʲ
=e(X)
=indα(d).
3.2 Dolbeault complex
Let X be a complex n-dimensional manifold,Tℝ its tangent bundle as a real manifold, and T=T¹,⁰ the holomorphic tangent bundle. Recall that
__
T*ℝ ⨂ ℂ ≅ T* ⨁ T*,
__
∧ⁱ(T*ℝ ⨂ ℂ) ≅ ∧ⁱ(T* ⨁ T*) ≅ ⨁ₚ₊q₌ᵢ (∧ᴾT*
__
⨂ ∧qT*).
__
Let ∧ᴾ,q=∧ᴾT* ⨂ ∧qT*,Aᴾ,q:=Γ
__
(∧ᴾT* ⨂ AqT*).The exterior derivative d: Aᴾ,q → Aᴾ⁺¹,q ⨁ Aᴾ,q⁺¹ splits into d=∂+ˉ∂,with ∂:Aᴾ,q → Aᴾ⁺¹,q and ˉ∂: Aᴾ,q → Aᴾ,q⁺¹.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。