By splitting principle,this is true for general rank n complex vector bundles. Here are some examples:i) ρ:∪ₙ → ∪ₙ is conjugation (of complex numbers). E × ᵨ
ℂⁿ=E*=ˉE. kⁱⱼ=–δⁱⱼ.
ₙ ₙ
c(E*)=∏(1 – xᵢ)=∑(–1)ⁱcᵢ(E).
ᵢ₌₁ ᵢ₌₀
ii) For ∧ᵏ E,u ∈ Tⁿ acts as eᵢ₁ ∧ · · · ∧ eᵢₖ ↦ ue,∧ · · · ∧ ueᵢₖ.
c(αᵢ₁,. . .,ᵢₖ)=xᵢ₁+· · ·+xᵢₖ and c(∧ᵏE)
=∏ (1+(xᵢ₁+· · ·+xᵢₖ)).
1≤i₁<· · ·<iₖ≤n
iii) For ∧ᵏE*,
c(∧ᵏE*)=∏ (1–(xᵢ₁+· · ·+xᵢₖ)).
1≤i₁<· · ·<iₖ≤n
ch(∧ᵏE*)=∑eˉ(xᵢ₁+· · ·+xᵢₖ)).
1≤i₁<· · ·<iₖ≤n
iv)
ⁿ ⁿ
∑ ch(∧ᵏE*) · tᵏ=∏(1+te⁻ˣⁱ).
ₖ₌₀ ᵢ₌₁
Now let’s consider an oriented real bundle E of rank 2n. By splitting principle, we may assume that it splits into a direct sum of oriented plane bundles (or complex line
17
bundles) and talk about its Chern roots. We want to calculate ∑ⁿₖ₌₀ ch(∧ᵏE* ⨂ ℂ) · tᵏ Let ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ be the inclusion,where Tⁿ denotes the standard maximal torus. This Tⁿ ⊂ ∪₂ₙ is a conjugate subgroup of a torus in the standard maximal torus in ∪₂ₙ, and the conjugation restricts to
(cos(2πtᵣ) –sin(2πtᵣ)
) ↦(ᵉⁱ²πᵗʳ 0)
(sin(2πtᵣ) cos(2πtᵣ) ( 0 ₑ⁻ⁱ²πᵗʳ)
on each S¹. Thus the weights of ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ are (x₁,–x₁,. . .,xₙ,–xₙ). where the xᵢ’s are the Chern roots. By the same argument as above,
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。