数学联邦政治世界观
超小超大

指标定理(四) (9-2)

By splitting principle,this is true for general rank n complex vector bundles. Here are some examples:i) ρ:∪ₙ → ∪ₙ is conjugation (of complex numbers). E × ᵨ

ℂⁿ=E*=ˉE. kⁱⱼ=–δⁱⱼ.

ₙ ₙ

c(E*)=∏(1 – xᵢ)=∑(–1)ⁱcᵢ(E).

ᵢ₌₁ ᵢ₌₀

ii) For ∧ᵏ E,u ∈ Tⁿ acts as eᵢ₁ ∧ · · · ∧ eᵢₖ ↦ ue,∧ · · · ∧ ueᵢₖ.

c(αᵢ₁,. . .,ᵢₖ)=xᵢ₁+· · ·+xᵢₖ and c(∧ᵏE)

=∏ (1+(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

iii) For ∧ᵏE*,

c(∧ᵏE*)=∏ (1–(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

ch(∧ᵏE*)=∑eˉ(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

iv)

ⁿ ⁿ

∑ ch(∧ᵏE*) · tᵏ=∏(1+te⁻ˣⁱ).

ₖ₌₀ ᵢ₌₁

Now let’s consider an oriented real bundle E of rank 2n. By splitting principle, we may assume that it splits into a direct sum of oriented plane bundles (or complex line

17

bundles) and talk about its Chern roots. We want to calculate ∑ⁿₖ₌₀ ch(∧ᵏE* ⨂ ℂ) · tᵏ Let ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ be the inclusion,where Tⁿ denotes the standard maximal torus. This Tⁿ ⊂ ∪₂ₙ is a conjugate subgroup of a torus in the standard maximal torus in ∪₂ₙ, and the conjugation restricts to

(cos(2πtᵣ) –sin(2πtᵣ)

) ↦(ᵉⁱ²πᵗʳ 0)

(sin(2πtᵣ) cos(2πtᵣ) ( 0 ₑ⁻ⁱ²πᵗʳ)

on each S¹. Thus the weights of ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ are (x₁,–x₁,. . .,xₙ,–xₙ). where the xᵢ’s are the Chern roots. By the same argument as above,

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

卿如许 连载中
卿如许
唯梦闲人不梦卿
诈尸了又,最近会陆陆续续更一些,也会对之前的一些做一些修改。总的来说世界观会变得更大然后人物会变多,主线以卿安(长卿)的视角写,在其故事中未......
2.8万字4周前
轩璃永世 连载中
轩璃永世
酌幽南菲
这里是古代,现代平行的,神则可以自由穿越而神,则在天圣界,天圣界又分为天、圣两界,两界里面又包含其他种族。天界仙主——莫千璃和圣界圣主萧凌轩......
0.3万字4周前
娘子,我躺平你来 连载中
娘子,我躺平你来
妖妖予以
双男主,有生子,带萌娃,雷者勿入!!粉丝群:677727698,想和作者探讨的可以加一下,不过催更勿扰,扰作者就是懒!还有一本《战神殿下的心......
18.5万字4周前
幻影忍者:余晖 连载中
幻影忍者:余晖
猫泫儿
双向奔赴/现代言情/校园/劳晴磕起来![男:第一次遇见她觉得她很可爱~][女:第一次和他说话很紧张][男:我喜欢上她了!][女:我开始暗恋他......
6.3万字4周前
失忆的狠毒公主 连载中
失忆的狠毒公主
禾曦牧
【本作品在2020.3.21时签约】[严禁转载!已完结]<神妄文社>你逆光而来,配得上所有的好“这是哪?”落水的公主醒来就不记得......
10.4万字4周前
落入殇怀 连载中
落入殇怀
落亦殇
她遇见他,从笑魇如花到擦肩而过,从落往殇泪到往生苦寻……最后扑朔迷离魂牵梦绕,命运往生情断三世,从此——殇和冥焦灼嘶哑……彼岸生花,清风徐来......
11.3万字4周前