数学联邦政治世界观
超小超大

指标定理(四) (9-1)

注意:指标定理(4/5)

16

Now we compute its topological index. We need to compute the Chern character of an induced bundle,and we consider this in a general setting.

Let ρ:∪ₙ → ∪ₘ be a homomorphism,and E be a complex vector bundle of rank n. Denote the induced bundle by E × ᵨ ℂᵐ. We want to find how the Chern classes of the two bundles are related.

Without loss of generality,we assume that E=l₁⨁ · · · ⨁lₙ,that is to say,the structure group has been reduced to the torus Tⁿ. ρ defines a representation of the torus and the representation decomposes into one-dimensional ones,since Tⁿ is compact and abelian.

We first consider α:Tⁿ= S¹ × · · · × S¹ → S¹. Suppose it is of the form (z₁,. . .,zₙ) ↦

∏zᵢᵏⁱ,kᵢ ∈ ℤ. The S¹-bundle ET × α S¹ → BT has first chern class c(α) ∈ H²(BT;ℤ),which is the image of the generator in H²(BS¹;ℤ). H*(BT;ℤ)=ℤ[t₁,. . .,tₙ] is the tensor product of copies of H*(BS¹;ℤ).

Let ф:Tⁿ → Uₙ be the embedding. The bundle ET ×α ℂ → BT has transition functions ∏ fᵢᵏⁱ when ET × ф ℂⁿ=l₁⨁ · · · ⨁lₙ → BT has transition functions (f₁,. . .,fₙ),according to the definition of α. Thus ET × α ℂ → BT is isomorphic to l₁ᵏⁱ ⨂ · · · ⨂lₙᵏⁿ .Thus c(α)=∑kᵢtᵢ.

In general,if α=(α¹,. . .,αᵐ):Tⁿ → Tᵐ,

ch(ET × α ℂᵐ)=∑eᶜ⁽αʲ⁾=∑eΣᵢᵏʲᵢᵗᵢ .

ⱼ ⱼ

The total Chern class is

c(ET × α ℂᵐ)=∏(1+c(αʲ))=∏(1+∑kʲᵢtᵢ).

ʲ ⱼ

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

噩梦奇幻传说 连载中
噩梦奇幻传说
洛星熠不是迷惑人
拥有者一个甚至多个的精灵异能者来到人类世界发生的竞争对抗,到底是谁笑到最后?
2.6万字4周前
宣白不悔 连载中
宣白不悔
笙箫未冷
紫宣:第一世,你嫁给我,因为悔。第二世,你嫁给我,因为乐。第三世,你嫁给我,因为喜。这一世……白夭夭:因为爱。每一世,我都喜欢你。只是,你不......
3.5万字4周前
天心恋之命缘纠缠 连载中
天心恋之命缘纠缠
樱涵不是颖憨
[暮蓉樱涵]自打败坏蛋三兄弟后铁心与神兵小将以经五年未见,而在这第六年他们会见面吗?敬请期待……
3.5万字4周前
爱是一场叛逃 连载中
爱是一场叛逃
无子棋
35.2万字4周前
带着萌宠穿越时空第一季 连载中
带着萌宠穿越时空第一季
凤雪玥
  凤玥汐,二十一世纪的少年侦探,因为一场意外,与自家宠物卷入了时空裂缝,来到了一个平行空间,一个蓝发金眼的美少年告诉她,需要穿越各个平行世......
15.3万字4周前
小花仙冬季篇(自创) 连载中
小花仙冬季篇(自创)
星薇芷
初代和二代花仙魔法使者一起收服冬季节气花信
0.6万字4周前