数学联邦政治世界观
超小超大

指标定理(一) (11-9)

Let Vectⁿℝ(B) denote the set of isomorphism classes of n-dimensional real vector bun-dles over B,[B,Gₙ] denote the set of homotopy classes of maps B → Gₙ,then we have a surjection

Vectⁿℝ(B) → [B,Gₙ]

Moreover,if B is a CW-complex (or simplicial complex),then this correspondence is in fact one-to-one.

Theorem 5 Let ξ be α υector bundle oυer B,f₀,f₁:B' → B αre continuous mαps such thαt f₀ is homotopic to f₁.Then if B' is α CW-complex,ωe hαυe f*₀(ξ) ≅ f*₁(ξ).

The proof is done by induction on the skeleta of B'.

Therefore for a CW-complex B we have

₁:₁

Vectⁿℝ(B) ↔ [B,Gₙ(ℝ∞)],and similar-ly

₁:₁

Vectⁿℂ(B) ↔ [(B,Gₙ(ℂ∞)]. In this sense,Gₙ is called the classifying space for n-dimensional vector bundles,γⁿ is called the universal n-plane bundle,and f:B → Gₙ is called the classifving map for ξ.

This is true for general paracompact space. See Theorem 1.6 in Vector Bundles αnd K-Theory by Hatcher. We sketch the proof in the case of a compact,Hausdorff base.

Theorem 6 Let X be compαct Hαusdorff. Let E

→ B be α υector bundle αnd f₀,f₁: X → B homotopic mαps. Then f*₀(E) ≅ f*₁(E).

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

选初中牲当女主的系统脑子有病 连载中
选初中牲当女主的系统脑子有病
星※_58782580074548463
【系统+群像+无cp+脑洞+励志+无脑】杨响,典中典的当代初中牲一枚。杨响,性格缺陷是写做无脑读作乐观。杨响,某天某刻陷入自称系统的人?的谎......
0.2万字6个月前
有爱了不起呀,就是了不起! 连载中
有爱了不起呀,就是了不起!
四室
短篇集合。
4.4万字5个月前
黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.8万字5个月前
无限:山海地图持续为您导航 连载中
无限:山海地图持续为您导航
隔岸观柏
【无cp-无限流(微微恐)-女强-异能】黎听余自诩倒霉蛋但直到她收到了山海地图的短信后她才发现——自己可以更倒霉*自从被莫名其妙拉进副本后黎......
0.6万字5个月前
苍穹以上我为尊 连载中
苍穹以上我为尊
小生川泽
[注:双男主文/温柔体贴挂王×傲娇美人少主]前世二十一世纪,出自隐世宗门的顶尖高手叶雲,惨遭仇人追杀。重生到一个陌生的世界,这个世界以强者为......
8.9万字5个月前
在原始森林养熊猫 连载中
在原始森林养熊猫
网名已被删除
一份去森林里帮助毛茸茸的工作
16.3万字5个月前