数学联邦政治世界观
超小超大

指标定理(一) (11-10)

Proof.Let h:X × l → B be a homotopy from f₀ to f₁.Then f*₀(E)=h*(E)|x×{0} and similarly for f*₁(E).So without loss of generality we may replace B by X × l,and we wish to show that the time 0 and time 1 restrictions of a bundle E on X × l are isomorphic. Using compactness,one can show that there is a finite cover {U₁,. . .,Uₙ} of X so that the restriction of E to each Uᵢ × l is trivial.Let {φᵢ}ⁿ ᵢ₌₁ be a partition of unity subordinate to the cover {∪ᵢ}ⁿ ᵢ₋₁ . For each 0 ≤ j ≤ n,define Φⱼ=∑ʲᵢ₌₁ φᵢ. Thus Φ₀=0 and Φₙ = 1 on X. For simplicity,we will assume n=2,since that is enough to see the argument. Thus we have

Φ₀=0 ≤ Φ₁=φ₁ ≤ Φ₂=1

on X.For each 0 ≤ j ≤ n,we define Xⱼ ⊆ X × l to be the graph of Φⱼ.Thus X₀=X × {0} and X₂=X × {1},and each Xⱼ is homeomorphic to X νia the projection. Finally,let Eⱼ be the restriction of E to Xⱼ ≅ X. We claim that E₀ ≅ E₁ ≅ E₂. To see that E₀ ≅ E₁,recall that E is trivial on ∪₁ × l. It follows that the trivialization of E on ∪₁ restricts to trivializations φ∪₁ of E₀ and E₁ on ∪₁. Define α∪₁: (E₀)|∪₁ → (E₁) |∪₁ to be the composition

(φ∪₁)|ᴇ₀ (φ∪₁)⁻¹

(E₀)|∪₁ → F × ∪₁ → (E₁)|∪₁

Now let V₁=X–supp(φ₁). Since φ₁ is supported inside ∪₁,it follows that ∪₁∪V₁=X. Also,we have that (E₀)|ᵥ₁=(E₁)|ᵥ₁,since X₀ ∩(V₁ × l)=V₁ × {0}=X₁ ∩(V₁ × l). Now α∪₁ on (E₀)|∪₁ glues together with id on (E₀) |ᵥ₁ to give an isomorphism E₀ ≅ E₁. ▢

1.4 Principal bundles and classifying space

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

神殒大陆1 连载中
神殒大陆1
路过人间恋凡尘
墨岁愿回归到原本世界与身边人守护一方平安男主:雪净泽女主:墨岁愿
4.3万字5个月前
修真聊天群(改编) 连载中
修真聊天群(改编)
不想说什么,,
好大大不透剧,总之说是宋书航穿越重生。(我透剧了,这样是不是意思我不是好大大?)
0.2万字5个月前
仙侣奇缘之千古绝恋 连载中
仙侣奇缘之千古绝恋
竹仙醉儿
有一种爱相恋醉秋,有一种情美若陶花!两对绝世的仙侣,上演旷古的绝恋,至死不渝!生同栖死同穴,比翼双飞情牵三世千古不变的痴恋无悔,书写着一段传......
43.8万字5个月前
闲散阅读 连载中
闲散阅读
末影族
已完结,如果有幸被你阅读,可先查看最后一章。都是短篇,质量参差不齐,我会尽量完善的。
10.0万字5个月前
时空之仙缘 连载中
时空之仙缘
时千月
幻柠玉:任世间三千轮回,我的心只为你而跳动。幻柠曦:如若能留你在我身旁,弃了这君临天下、半壁江山又何妨。幻柠若:只怪你那日惊鸿一瞥,艳了我的......
26.3万字5个月前
此情长久阿念篇 连载中
此情长久阿念篇
孙伊璇
阿念蓐收
0.6万字5个月前