数学联邦政治世界观
超小超大

指标定理(一) (11-10)

Proof.Let h:X × l → B be a homotopy from f₀ to f₁.Then f*₀(E)=h*(E)|x×{0} and similarly for f*₁(E).So without loss of generality we may replace B by X × l,and we wish to show that the time 0 and time 1 restrictions of a bundle E on X × l are isomorphic. Using compactness,one can show that there is a finite cover {U₁,. . .,Uₙ} of X so that the restriction of E to each Uᵢ × l is trivial.Let {φᵢ}ⁿ ᵢ₌₁ be a partition of unity subordinate to the cover {∪ᵢ}ⁿ ᵢ₋₁ . For each 0 ≤ j ≤ n,define Φⱼ=∑ʲᵢ₌₁ φᵢ. Thus Φ₀=0 and Φₙ = 1 on X. For simplicity,we will assume n=2,since that is enough to see the argument. Thus we have

Φ₀=0 ≤ Φ₁=φ₁ ≤ Φ₂=1

on X.For each 0 ≤ j ≤ n,we define Xⱼ ⊆ X × l to be the graph of Φⱼ.Thus X₀=X × {0} and X₂=X × {1},and each Xⱼ is homeomorphic to X νia the projection. Finally,let Eⱼ be the restriction of E to Xⱼ ≅ X. We claim that E₀ ≅ E₁ ≅ E₂. To see that E₀ ≅ E₁,recall that E is trivial on ∪₁ × l. It follows that the trivialization of E on ∪₁ restricts to trivializations φ∪₁ of E₀ and E₁ on ∪₁. Define α∪₁: (E₀)|∪₁ → (E₁) |∪₁ to be the composition

(φ∪₁)|ᴇ₀ (φ∪₁)⁻¹

(E₀)|∪₁ → F × ∪₁ → (E₁)|∪₁

Now let V₁=X–supp(φ₁). Since φ₁ is supported inside ∪₁,it follows that ∪₁∪V₁=X. Also,we have that (E₀)|ᵥ₁=(E₁)|ᵥ₁,since X₀ ∩(V₁ × l)=V₁ × {0}=X₁ ∩(V₁ × l). Now α∪₁ on (E₀)|∪₁ glues together with id on (E₀) |ᵥ₁ to give an isomorphism E₀ ≅ E₁. ▢

1.4 Principal bundles and classifying space

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我又不是主角 连载中
我又不是主角
一碗土豆泥
【已完结】男主角们怎么有点像某个少年男团?苏念穿到玛丽苏文中,成为恶毒女配顾小米?原文中的顾小米嚣张跋扈,处处为难女主破坏女主感情线,最终被......
21.5万字1年前
异世武皇 连载中
异世武皇
萧子邪
在这个世界上,一个沉睡三千年的女子醒了过来。一个蓝星的少年来到了这个世界。他们将在这个世界书写怎么样的传奇境界化分:“武徒”“武者”“武师”......
9.0万字1年前
美男兽夫太磨人 连载中
美男兽夫太磨人
铂金项链
意外溺水,醒来竟看见一个绝色美男鱼趴在海边昏迷不醒!?我不过是去森林采果,怎么威武霸气的帅气狮人,占有欲爆棚的腹黑蛇人,阳光矫健的暖男豹人,......
8.7万字1年前
现世帝姬 连载中
现世帝姬
忆轩孤梦
当封印千万年的妖神女帝苏醒,发现自己身在人妖共存的现代世界,会发生什么故事呢?当然是好好生活,开始撩各路美男大咖,养个后宫呀!【原创勿抄】【......
10.7万字1年前
修仙:原来夫君是妖孽 连载中
修仙:原来夫君是妖孽
梦弦月奇迹小说家
缺少一魄的莫清音多年痴愚,十六岁那年被祖母卖给七十岁老头冲喜,万念俱灰之下跳湖,没成想发动了隐藏在体内的引魂珠,当她再次睁眼时已魂魄俱全,自......
33.3万字1年前
我与天道为敌 连载中
我与天道为敌
树街黑猫
传说在这个世上,有上千上万个世界位面,每个世界位面都有不同的规则。而有一个人掌管着这些世界,此人便是天道。有一人杀了天道,只留一人,而这个人......
5.3万字1年前