数学联邦政治世界观
超小超大

指标定理(一) (11-10)

Proof.Let h:X × l → B be a homotopy from f₀ to f₁.Then f*₀(E)=h*(E)|x×{0} and similarly for f*₁(E).So without loss of generality we may replace B by X × l,and we wish to show that the time 0 and time 1 restrictions of a bundle E on X × l are isomorphic. Using compactness,one can show that there is a finite cover {U₁,. . .,Uₙ} of X so that the restriction of E to each Uᵢ × l is trivial.Let {φᵢ}ⁿ ᵢ₌₁ be a partition of unity subordinate to the cover {∪ᵢ}ⁿ ᵢ₋₁ . For each 0 ≤ j ≤ n,define Φⱼ=∑ʲᵢ₌₁ φᵢ. Thus Φ₀=0 and Φₙ = 1 on X. For simplicity,we will assume n=2,since that is enough to see the argument. Thus we have

Φ₀=0 ≤ Φ₁=φ₁ ≤ Φ₂=1

on X.For each 0 ≤ j ≤ n,we define Xⱼ ⊆ X × l to be the graph of Φⱼ.Thus X₀=X × {0} and X₂=X × {1},and each Xⱼ is homeomorphic to X νia the projection. Finally,let Eⱼ be the restriction of E to Xⱼ ≅ X. We claim that E₀ ≅ E₁ ≅ E₂. To see that E₀ ≅ E₁,recall that E is trivial on ∪₁ × l. It follows that the trivialization of E on ∪₁ restricts to trivializations φ∪₁ of E₀ and E₁ on ∪₁. Define α∪₁: (E₀)|∪₁ → (E₁) |∪₁ to be the composition

(φ∪₁)|ᴇ₀ (φ∪₁)⁻¹

(E₀)|∪₁ → F × ∪₁ → (E₁)|∪₁

Now let V₁=X–supp(φ₁). Since φ₁ is supported inside ∪₁,it follows that ∪₁∪V₁=X. Also,we have that (E₀)|ᵥ₁=(E₁)|ᵥ₁,since X₀ ∩(V₁ × l)=V₁ × {0}=X₁ ∩(V₁ × l). Now α∪₁ on (E₀)|∪₁ glues together with id on (E₀) |ᵥ₁ to give an isomorphism E₀ ≅ E₁. ▢

1.4 Principal bundles and classifying space

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

性格缺陷 连载中
性格缺陷
Le néant
不舒服,先死几天(ᇂ_ᇂ|||)【架空世界,双男主,1V1】男主喝了副作用最小的实验体,后期会很强。脑洞可能会有点奇怪,无厘头,男主不善良,......
22.6万字5个月前
神呐,为什么只有我会遇到渣男 连载中
神呐,为什么只有我会遇到渣男
秋名山白老板
什么?完成任务?撕渣男?
7.5万字5个月前
硁硁之信 连载中
硁硁之信
斑蓝
好吃懒做的傻子Vs矝贵恶劣大聪明。睡眠之神Vs小爱神有副cp
0.2万字5个月前
青法缘 连载中
青法缘
夜水珠华
“世上安得两全法,不负如来不负青”这是一个关于小青与法海的故事。是前世,还是今生,又或许是下一世。百界的执念即将结束,而我的执念才刚开始。…......
4.2万字5个月前
穿书后我靠玄学走上人生巅峰 连载中
穿书后我靠玄学走上人生巅峰
水上开花
一个玄学弟子大晚上的吐槽一个玄幻文,然后…穿进去了。穿成了一只长得难看,羽毛稀少的鸟?于是…她每天对着自家的铜镜问:魔镜魔镜,告诉我,谁才是......
11.8万字5个月前
无界之书 连载中
无界之书
冬幽雨
埋葬在世界最深处的故事,不属于任何存在的故事,直到那些故事都被淹没在了深土之中。被遗忘的名字,无限的选择,背叛或是信仰,从来都只是一念之间。......
26.9万字5个月前