数学联邦政治世界观
超小超大

指标定理(一) (11-8)

Let ℝ∞ denote the vector space consisting of those infinite sequences x=(x₁, x₂,x₃, . . .)with only finitely many nonzero coordinates. For fixed k,the subspace consisting of all x=(x₁,x₂,. . .,Xₖ,0,0,. . .) will be identified with the coordinate space ℝᵏ. The infinite Grassmann manifold Gₙ=Gₙ(ℝ∞) is the set of all n-dimensional linear sub-spaces of ℝ∞,topologized as the direct limit of the sequence Gₙ(ℝⁿ) ⊂ Gₙ(ℝⁿ⁺¹) ⊂ Gₙ(ℝⁿ⁺²) ⊂. . . . As a special case, the infinite projective space P∞=G₁(ℝ∞) is equal to the direct limit of the sequence P¹ ⊂ P² ⊂ P³ ⊂. . . .

A canonical bundle γⁿ over Gₙ is constructed, just as in the finite dimensional case,as follows. Let E(γⁿ) ⊂ Gₙ × ℝ∞ be the set of all pairs ( n-plane in ℝ∞,vector in that n-plane ),topologized as a subset of the Cartesian product. Definen π:E(γⁿ) → Gₙ by π(X,x)=X. In fact γⁿ is locally trivial,and we omit the proof.

Recall that a paracompact space is a Hausdorff space such that every open covering has a locally finite open refinement. The infinite Grassmann space is paracompact.

Lemma 4 For αny fiber bundle ξ oυer α pαrαcompαct spαce B,there erists α locαlly finite coυering of B by countably mαny open sets ∪₁,∪₂,∪₃,. . .,so thαt ξ|∪ᵢ is triυiαl for eαch i.

Theorem 3 Any ℝⁿ-bundle ξ oυer α pαrαcompαct bαse spαce αdmits α bundle mαp ξ → γⁿ.

Theorem 4 Any tωο bundle mαps ξ → γⁿ αre bundle-homotopic.

5

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

十二星座之繁星闪烁 连载中
十二星座之繁星闪烁
雪樱娜
〔往忆绚烂、繁星闪烁、灿星璀璨〕正文:{凡间篇}十二星座坠落凡间,那个只有十三个人的班级,她们,到底是谁?“我们一直都在,从未离开。”(这篇......
7.9万字4周前
凯莉是我的! 连载中
凯莉是我的!
星辰缭乱
雷狮“没我的允许,你就不许死,你要是敢死,本大爷绝不会扰你!”“雷狮,疯子…好好活下去,替我好好照顾好哥哥…”
3.3万字4周前
硬核一中:黑暗者的阳光 连载中
硬核一中:黑暗者的阳光
炎新一的掌上明珠
敢于向黑暗宣战的人,心里必须充满光明。
1.5万字4周前
狐妖嗜宠——第一卷 连载中
狐妖嗜宠——第一卷
该用户已注销
现代女杀手,一手医术可救人,一手暗器杀人无数。一次聚会后被一口水噎死了?穿越到了一个神秘的世界,遇见了一只可爱的小狐狸,还有各种形形色色的神......
12.5万字4周前
烟雨街28号 连载中
烟雨街28号
倾小小
“子禅,你说人世间向往的感情应该是怎样的?”“我,妻,加一只猫,一起安安静静地生活。”“可子禅是佛门弟子,怎可娶亲?”“我若还俗,如何不能?......
10.1万字4周前
章鱼本本(午版) 连载中
章鱼本本(午版)
林林林七七
泥嚎!这里是午版章鱼本本!
0.1万字4周前