数学联邦政治世界观
超小超大

集合论中康托定理怎么证明 (2-1)

cantor定理是说,任意集合的势(元素的数量)小于其幂集(其所有子集构成的集合)的势。

对于任意两个集合A 和 B ,满射: A surj B 意味着他们的势: |A| ≥ |B|

所以非满射: not A surj B 意味着 |A|<|B|

所以要证明一个集合A 小于其幂集 P(A),则只用证明不是满射的即可。

如果A surj P(A),那意味着 P(A)中每个元素至少拥有一个从 A 的元素映射过来的箭头,所以若能证明 P(A) 中有个元素(即 A 的一个子集)它没有映射箭头即可证明非满射。

我们用g 表示映射函数,那么就是说,找到 A 的一个不被 g 作用的子集即可。

我们将这个子集(也就是P(A) 的一个元素)用 Ag 表示:

Ag∷={α ∈ A│α ∉ g(α)}

现在证明,P(A) 中Ag 没有映射箭头(即 A 中没有元素能与之对映):

用反证法,假设 A 中有这个元素对映Ag ,我们称这个元素为 α₀ ,即:

A(g)=g(α₀)

A P(A)

∶ ∶

∶ ∶

∶ g ∶

α₀∶} → {∶

∶↘ ∶

∶ ∶↙Ag

Ag{∶

∶↗

α₀

那么,这个A 中的元素 α₀ 在 A 中的哪个地方?在不在 A 的子集 Ag 里?

• 若在,那么意味着 α₀ 也满足 Ag 的定义,即不被 g 作用(也就是没有箭头):α₀ ∉ g(α₀)

这与α₀ 有箭头指向 Ag 这个前提假设相矛盾。

• 若不在,则意味着 α₀ 被 g 作用,满足 α₀ ∈ g(α₀),但是 Ag=g(α₀),所以 α₀ 又在 Ag 里面,矛盾。

α₀ 没有容身之地,所以不存在 α₀ 映射 P(A) 中的 Ag ,即非满射,即 |A|<|P(A)|。

还有一个更直观的方法可以看到这一现象:(对角论证法)

集合的子集,可以用二进制数组表示,其中0表示没有,1表示有,并假设这些子集可以按一定顺序列出来(可数的)。

例如:集合{A,B,C},其子集有:{A,B,C},{A,B},{AC},{B,C},{A},{B},{C},{}

分别对映二进制数组{1,1,1},{1,1,0},{1,0,1},{0,1,1},{1,0,0},{0,1,0},{0,0,1},{0,0,0}

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

微烬 连载中
微烬
居易行简_286253774813961
我本以为已走向光明,未曾想仍处于黑暗。荆棘刺出鲜血,幽灵正在游荡,利剑贯穿胸膛,春日永不来临,凛冬常驻于此,沉默抑或沉沦?不!集微光化为日光......
0.3万字1个月前
WAN安 连载中
WAN安
挽安27
(已签约哦~不得抄袭)原创,最重情亦是最无情
17.9万字4周前
父亲:请给我自由 连载中
父亲:请给我自由
西门时野
程安一个不爱学舞蹈的少年一切都源自于十年前的那场车祸让他失去了母亲严苛的父亲对他寄予厚望严格训练希望其能成为超越自己的优秀舞者【本文会和上一......
2.4万字4周前
九命猫与她的人鱼哥哥! 连载中
九命猫与她的人鱼哥哥!
晚夜猪酱
本文已弃,有时间再写
18.0万字4周前
等价交易 连载中
等价交易
灰青
有人用情感交换了金钱和地位,有人用情感换她一生自由,如果是你,会换什么呢?
2.8万字4周前
堕神劫 连载中
堕神劫
香辣宝
她本是神殿之中的神仙,遭人陷害来渡这必死劫难,却不想她乃是天道选定的神魔共主!人间这一遭所经得一切,都必将成为她共主道路上的垫脚石!
6.7万字4周前