数学联邦政治世界观
超小超大

实数(二) (5-1)

本文的主要目的是通过有理数集的分划(也就是Dedekind分划法)给出实数公理系统的一个模型,或者说将实数从有理数“构造”出来。为此,我们将先给出实数的代数结构(即实数的公理),然后证明我们构造的有理数集分划满足这个结构,此外我们还要证明这样构造出来的实数在同构意义下是唯一的。本文的构造部分主要参考了Walter Rudin的Principle of Mathematical Analysis第一章的附录,唯一性部分的证明是作者自己写的。

l.实数的代数结构

在构造实数之前,我们从代数的角度看,希望实数具有这样一些代数结构:

1. 实数集是一个全序集,即满足存在一个二元关系,对于实数集上的任意两个元素有

x ≤ y,y ≤ x

至少一个成立。如果两个式子同时成立,我们就记x=y。我们也自然而然地采用 ≥,<> 这些符号。

1. 实数集具有最小上界性,即对于实数集的子集 A ,如果存在一个实数 α 满足 α 大于中的一切元素(即 α 是 A 的一个上界),那么存在一个实数 s 满足

(S1)s 是 A 的上界;

(S2)对于一切实数r<s , r 不是的上界。

我们记s=sup A 。这一条公理记作确界原理。

1. 实数集是一个域,即满足以下域的公理:

实数集上有一种二元运算加法+:ℝ × ℝ → ℝ满足

(A1)交换律,即对于α,b∈ℝ 有 α+b=b+α ;

(A2)结合律,即对于α,b,c∈ℝ 有 (α+b)+c=α+(b+c);

(A3)存在零元,即存在一个数0 满足对任意 α∈ℝ 有 α+0=α ;

(A4)存在逆元,即对于任意α∈ℝ ,存在一个 b∈ℝ 使得 α+b=0 。我们自然地记 b= –α 。

实数集上有一种二元运算乘法 ℝ × ℝ → ℝ 满足(公理采用一般写法,即省略乘号)

(M1)交换律,即对于α,b∈ℝ 有 αb=bα ;

(M2)结合律,即对于α,b∈ℝ 有 (αb)c=α(bc) ;

(M3)存在单位元,即存在一个数0 满足对任意 α∈ℝ 有 1 · α=α ;

(M4)存在逆元,即对于任意α∈ℝ\{0} ,存在一个 b∈ℝ\{0} 使得 αb=1 。我们自然地记

1

b=── 。

α

加法与乘法满足分配律,即对任意α,b,c∈ℝ 有

(D)α(b+c)=αb+αc

1. 实数集是一个有序域,满足

(O1)对任意x,y,z ,当 y<z 时有 x+y<x+z ;

(O2)对任意x,y>0 ,有 xy>0 。

除了这些结构以外,我们还希望有理数是实数的一个子域,并且实数集是唯一的、不依赖于我们的构造方式。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

凯丽的冒险 连载中
凯丽的冒险
纳宝帝丽芝士威化饼干
三个小屁孩的冒险
0.3万字5个月前
双女主:标记 连载中
双女主:标记
Tsing江逾白
小心进啊,主要就是一些初中生的感叹,但又无可否认
2.4万字5个月前
缘起情定 连载中
缘起情定
笙箫未冷
两姐妹的爱情,一个比一个坎坷!仅坐标系和雪樱子食用,其他人慎入。
7.2万字5个月前
魂公子的冷艳娇妻 连载中
魂公子的冷艳娇妻
婴零
轻虞轻语,魂断败卿...在每一次的彷徨,每一步的光影中,能否保留那一丝清明孤影轮回,天穹血变...在无尽的劫数之中,能否打破注定孤独的命运你......
18.0万字5个月前
CH:幻想之都 连载中
CH:幻想之都
叶笙落墨_leaf
争做新时代不剧透好作者祖宗含量极高!!!
1.7万字5个月前
末日之歌:与他同行 连载中
末日之歌:与他同行
浅嫣
颜言,22岁,女,SOL研究基地人物。“欢迎来到末日。”颜博士,这是一场性命博弈,输了就直接淘汰哦~“都说科学家们疯狂,可我不觉得。”“那…......
9.5万字5个月前