数学联邦政治世界观
超小超大

Steinhaus定理的证明 (3-1)

这篇短文的目的主要是回顾一下实分析中经典的Steinhaus定理,并介绍该定理的一个推广。最后我们将用这些结果来解决两个很有趣的问题。

首先我们来回顾一下Steinhaus定理的叙述:

Theorem I (Steinhaus). 若 A ⊂ ℝ 是一个勒贝格可测集,并且 μ(A)>0. 则集合 A – A={α – b:α,b ∈ A}中包含一个零点的开邻域.

证明:根据勒贝格密度定理(另一个比较简单的证明也会放在文末),对于任意 ε ∈(0,1), 存在 𝐼=(α,b) 使得 μ(A∩𝐼)>(1 – ε)μ(𝐼).假设定理的陈述是错误的,那么存在一个实数列 xₙ → 0 但是 xₙ ∉ A – A. 那么根据假设 xₙ+A ⊂ ℝ – A,否则 xₙ ∈ A – A. 现在取 n 充分大使得 |xₙ|<εμ(𝐼). 我们有

μ(𝐼∩(xₙ+A))=μ((𝐼 – xₙ)∩A)

≥μ(𝐼∩A) – μ((𝐼\)𝐼 – xₙ))∩A)

≥μ(𝐼∩A) – μ((𝐼\(𝐼 – xₙ).

注意这里我们用到了勒贝格测度μ 的单调性和平移不变性. 另外,注意到当 |xₙ| 充分小时我们有 μ(𝐼\(𝐼 – xₙ))=|xₙ|.

最后,由于A,Aᶜ=ℝ – A 是不交的,我们有

μ(𝐼)=μ((𝐼∩A))∪(𝐼∩Aᶜ))

≥μ(𝐼∩A)+μ(𝐼∩(xₙ+A))

>(1 – ε)μ(𝐼)+(1 – ε)μ(𝐼) – |xₙ|

>(2 – 3ε)μ(𝐼).

由于ε>0 是任意的,我们可以选择 ε 充分小,使得 2 – 3ε=3/2>1..那么我们得到 μ(𝐼)>3μ(𝐼)/2. 从而我们推出了矛盾. 这就完成了证明. ◾

下面我们来看Steinhaus定理的一个推广:

Theorem II. 假设 A ⊂ ℝ 勒贝格可测并且 μ(A)>0. 假设 fᵢ(x),i=1,2,. . .,n 是定义在0附近的一个开邻域上的函数,并且 fᵢ 在 x=0 处连续, fᵢ(0)=0,i=1,2,. . .,n. 那么集合H={h ∈ ℝ:∃x ∈ ℝ s.t.x+fᵢ(h) ∈ A,i=1,. . .,n} 包含0点的一个开邻域.

证明:根据勒贝格密度定理,存在区间 𝐼=(α,b) 使得 μ(A∩𝐼)>(1 – ε)μ(𝐼). 现在考虑集合

Aᵢ(h)=A – fᵢ(h), i=1,. . .,n.

并且我们取|h| 充分小,此时 fᵢ(h) → 0,所以

∩Aᵢ ≠ ∅.不难验证存在 t ∈ (α,b)

ᵢ₌₁

使得

t∈∩Aᵢ.这是因为

ᵢ₌₁

μ(A∩𝐼)>(1 – ε)μ(𝐼)>0,所以我们可以取到 t∈(α,b)于是

t+fᵢ(h) ∈ A, i=1,. . .,n.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

谁家妖王这么怂 连载中
谁家妖王这么怂
狐菇菇
简介正在更新
1.1万字9个月前
小爹他不装了 连载中
小爹他不装了
爱吃芒果的小念
豪门公爵之子与落魄贵们温润公子的故事(双楠)
1.0万字9个月前
叶罗丽维将空间的缝隙 连载中
叶罗丽维将空间的缝隙
谢晚_151294833
本故事纯虚构。默粉和辛荒粉忽进。
0.2万字8个月前
我在兽世当咸鱼 连载中
我在兽世当咸鱼
画一抹淡淡白
凤霜雪作为时空管理局的新手,接了悬挂很久无人问津的兽世推进计划。她本以为自己接的是种种田,建建房子的悠闲剧本。哪知,到兽世以后才发现自己想多......
40.1万字8个月前
穿越兽世奥拉之都 连载中
穿越兽世奥拉之都
风绾梦境悠游客1559025012169
8.0万字8个月前
终极一班之落绾倾城 连载中
终极一班之落绾倾城
倾城繁花落
蓝斯洛!你疯了!--夏绾绾绾绾,我喜欢你!--流尘绾儿,不要离开我!--蓝斯洛绾绾,你和五熊都是我最在乎的人,任何人都不能伤害你们,哪怕是我......
1.6万字8个月前