数学联邦政治世界观
超小超大

如何证明集合论基数的Zermelo-Konig定理? (2-1)

而不能推出严格的不等式

∑αᵢ<∑βᵢ 和Παᵢ<∏βᵢ。

iel iel iel iel

例如,取l=(1,2,3,· · ·),令αᵢ=i–1,βᵢ=i,则有都有αᵢ<βᵢ (i∈l)。但是根据基数加法与乘法的定义容易得出

0+1+2+3+· · ·=R₀,1+2+3+· · ·=R₀,

即 ∑ αᵢ=∑ βᵢ。

i∈l i∈l

然而对于基数的和及积之间,有着一个严格的不等式。它是葛尼格 (Julius Konig,1849—1913)1905年给出的。

葛尼格定理 设(αᵢ,i∈l),(βᵢ丨i∈l)是两个基数集合,其中1为指标集合。如果对于任意的i∈l,都有αᵢ<βᵢ,则下列不等式成立:

∑ αᵢ=∑ βᵢ。

i∈l i∈l

证明 选取两个集合族(Aᵢ丨i∈l)和(Bᵢ丨i∈l),使诸 Aᵢ 是互不相交的各具有势 αᵢ 的集,诸 Bᵢ是各具有势βᵢ的集。

在承认选择公理的情况下,可以假设 l 为良序集③。为简单计,我们用1,2,3,· · · 记 l 的若干元。因诸 Bᵢ 可用与其对等的集来代替而不影响Πβᵢ

i∈l

的大小,故由αᵢ<βᵢ,可假定 Aᵢ 是 Bᵢ 的真子集,令Cᵢ=Bᵢ–Aᵢ,

则有 Bᵢ=Aᵢ∪Cᵢ,而Cᵢ⊃∅。

今由

A=∑Aᵢ=A₁∪A₂∪A₃∪· · ·∪ Aᵢ ∪ · · ·

i∈l

,B=∏Bᵢ=(B₁,B₂,B₃,· · ·,Bᵢ,· · ·)

‗ ‗

而来证明A<B,其中B是元复合p=〈b₁, b₂, b₃,· · ·,bᵢ,· · ·〉(bᵢ∈Bᵢ)的集。

‗ ‗

首先有A<B,事实上,若以cᵢ表示 C=Bᵢ–Aᵢ 中的一个固定元,则下列元复合的每一个

〈a₁,c₂,c₃,· · ·, cᵢ,· · ·〉(a₁∈A₁)

〈c₁,a₂,c₃,· · ·,cᵢ,· · ·〉(a₂∈A₂)

· · · · · · · · ·

〈c₁,c₂,c₃,· · ·,aᵢ,· · ·〉(aᵢ∈Aᵢ)

· · · · · · · · ·

(注意它们只有一个aᵢ,其余都是固定元 c !)当其中 aᵢ “走遍”所属的集 Aᵢ 时,分别构成 B 的一个子集;这些子集互不相交,且各与A₁,A₂,· · ·,Aᵢ,· · ·对等:由此可见,A与B的一子集对等。

另一方面,设

P=∑ Pᵢ=P₁∪P₂∪P₃∪· · ·∪Pᵢ∪· · ·

i∈l

______

是 B 的一个与 A 对等的子集 (其中Pᵢ~Aᵢ) ;我们证明,它不能与整个 B 全同,

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

兽之镇 连载中
兽之镇
小小阿玖
“我做了一个梦,一个不想醒来的梦……”我很喜欢最近流行的一句话“有的人用童年治愈一生而有的人却用一生来治愈童年”我也曾渴望着我能像别的孩子一......
2.7万字7个月前
快乐的事,也有离别 连载中
快乐的事,也有离别
风华_77459952121294688
羽白明明作为一名学生只需要好好读书就可以了,但,为什么结局总是离别。(作者之前没有写过小说,而且对一些东西不是很了解,同时作者还是一名学生,......
3.3万字7个月前
自由:双胞胎的舞蹈之路? 连载中
自由:双胞胎的舞蹈之路?
西门时野
双胞胎自幼学舞可时间来到初三时的那个冬天迎来一场变故双胞胎的道路又会发生何种变化又是否能够得到属于自己的自由
8.3万字7个月前
血族禁域:那时,夕颜花开 连载中
血族禁域:那时,夕颜花开
是柚子啊啊
【竹洒文学社】“我这一生纵然薄命,但爱你依旧啊……”“人的一生会遇见两个人,一个惊艳了时光,一个温柔了岁月”(不要抄袭,可以转载,必须私聊作......
5.2万字7个月前
三世煞 连载中
三世煞
学民
无妄之主,夜谋因爱被贬,轮回历劫,他心甘情愿的入了这红尘,却还是逃脱不了与云昊的纠缠,三世厉劫,次次都失了败,经历了这么多,他还能是那个善恶......
25.4万字7个月前
刺客伍六七(自创)第三季 连载中
刺客伍六七(自创)第三季
支持七三不是柒三
没啥可写的
2.1万字7个月前