数学联邦政治世界观
超小超大

朴素集合论还有什么问题?

前提:朴素集合论认为任何语句P(x)都可以组成一个集合.

1) Curry Paradox

令X={x|x∈x → 0=1}.我们做出如下推理:

1.X={x|x∈x → 0=1}这个是X的定义

2.x=Ⅹ → (x∈x ↔ X∈X)这个是等价置换

3.x=X → ((x∈x → 0=1) ↔ (X∈X → 0=1)这个是2的弱化

4.X∈X ↔ (X∈X → 0=1)这个是X的定义

5.X∈X → (X∈X → 0=1)这个是4的半边

6.X∈X → 0=1这个是根据5以及 p → (p → q) ⊢ p → q

7.(X∈X → 0=1) → X∈X这个是4的另外一个半边

8.X∈X这个根据6和7得出

9.0=1 这个根据6和8得出.

2) Paradox of Grounded Sets:

称一个集合x为groundless, 当且仅当存在一系列的集合x₁,x₂,. . .,xₙ 使得 . . . ∈ xₙ₊₁ ∈ xₙ ∈ xₙ₋₁ ∈. . .∈ x₂ ∈ x₁ ∈ x.一个集合为grounded当且仅当它不为groundless. 我们令P(x)为"x is grounded", 并且考虑 y={x|P(x)}.

问题: y是不是一个grounded set?

如果是的话, 那么根据定义, y属于y. 所以 . . .∈y∈y∈. . . ∈y∈y 此时根据定义, y不是一个grounded set. 得到矛盾. 如果y不是grounded set, 则存在一系列的集合 y₁,y₂,. . .,yₙ 使得 . . .∈ yₙ₊₁ ∈yₙ ∈yₙ₋₁ ∈. . . ∈ y₂ ∈y₁ ∈y. 那么可得 y₁ 为groundless set. 但是根据定义, y只包含了grounded sets, 所以得到矛盾.

3) Paradox of Non-circular Sets:

对于任意自然数n, 称一个集合为n-circular, 当且仅当存在集合 x₁,x₂,. . .,xₙ₋₁,使得x ∈ xₙ₋₁ ∈ xₙ₋₂ ∈. . .∈x₂∈x₁∈x . 称一个集合x为circular, 当且仅当存在自然数n使得x为n-circular. 一个集合为non-circular当且仅当它不为circular. 令P(x)作"x is non-circular", 并且考虑 y={x|P(x)}

问题: y是不是non-circular set?

假设是: 则y∈y,所以y为1-circular. 得到矛盾

假设不是: 则y为circular, 所以存在集合y₁,y₂,. . .,yₙ₋₁ 使得 y∈yₙ₋₁ ∈ yₙ₋₂∈. . .∈y₂ ∈ y₁∈y .若n=1, 我们则有 y∈y,因为y只包含non-circular的集合, 所以得到矛盾. 若n>1, 我们则有 y₁∈y∈yₙ₋₁ ∈ yₙ₋₂ ∈. . .∈y₂ ∈ y₁ ∈y,所以 y₁ 为circular,并且 y₁ ∈ y . 这与y的定义矛盾.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

小世界——灵魂快穿 连载中
小世界——灵魂快穿
逝桉
0.3万字1年前
乱陌 连载中
乱陌
淤霓
他轻轻扼住他的下巴:“哥哥,我好难过。”
0.7万字1年前
红月:死寂 连载中
红月:死寂
深渊教团神魔教主梦
悲惨之人的旅途。(本人涉及多个圈,所以可能会有其他圈人物,开学中之后每周一更)
5.7万字1年前
道士下山:我利用玄学当星探 连载中
道士下山:我利用玄学当星探
顾临希
【2021.8.9签约】宁姝自小跟从师傅在山上修习道术,十八岁学成下山,投靠远房小叔。不料,小叔刚开了一家娱乐公司,人员紧缺。于是宁姝成了一......
11.6万字1年前
蜉蝣之羽 连载中
蜉蝣之羽
浅茶酒满
女主带有记忆重生,危机四伏,尔虞我诈,一步一坑。欢迎收看全家都是演技派系列,昨天是敌人,可能明天就是同盟。女主可爱的时候是真可爱,但是动起手......
3.5万字1年前
神之使者柔雪篇2 连载中
神之使者柔雪篇2
可爱的花音酱吖
完成旅途开启新大门(本作是《神之使者柔雪篇》的续作)
0.6万字1年前