数学联邦政治世界观
超小超大

哥德尔不完备定理(解释一) (2-1)

题主的理解没有错,而且题主的问题非常棒!(但

@Ivony

的解释也对)

甚至当时很多专家误解哥德尔定理时也产生这个问题,因为数学家之前根深蒂固的概念是一个命题要说明它真,必须通过证明,那既然不能证明,怎么知道它真?一般教科书是无法准确回答这个问题的,实际上直到哥德尔不完备定理产生,这个问题才被澄清,“可证明”和“为真”才被区分。

不完备定理有哪些显著的哲学影响? - mathiq galory 的回答

1、什么是真命题

对于一个公理系统,可以有很多个结构(也可能只有唯一的结构),这指的是,这些结构都满足这个公理系统的每条命题,但它们之间却不一定相同,就是说会有命题在其中一个结构中为真,而在另一个结构中不真。以自然数论为例,它有一个最常见的模型,你熟悉的标准自然数结构,包含1,2,3……。但它还有其他结构,这些结构中,包含比所有标准自然数都大的非标准自然数。甚至有自然数结构,它包含实无穷多个自然数,但皮亚诺公理的每一条仍然成立。也有研究只满足一部分皮亚诺公理系统的算数模型的。具体内容可以google。

一个命题为真指的是在某个结构中为真,不完备定理中说的真命题,指的是在标准自然数结构中为真的命题。(由于标准自然数结构被认为是真实的、真正的自然数结构,因此哥德尔本人以及现在都直接用true arithemetical statement,但实际上指的是在标准算数结构中为真的命题)

既然公理系统[公式]无法推出也无法证伪哥德尔构造的命题[公式],那么(根据完备性定理)一定存在某个[公式]的结构U,其中哥德尔构造的那个命题为假,那么哥德尔构造的命题,是在哪个结构中为真?

2、哥德尔命题在什么结构中为真?

针对自然数论公理系统(皮亚诺公理系统,包含加法结合律,加法交换律,乘法交换律,各个命题的归纳法等),哥德尔构造的命题在标准自然数结构中为真。当然,在某些非标准模型中也真。

我的另一个答案具体解释了哥德尔的证明

如何简单清晰的解释哥德尔不完备定理? - mathiq galory 的回答

不完备定理对任何能够解释算数系统的公理系统都成立。针对这样的,语言L上的公理系统Σ,它解释自然数论的方式诱导Σ的结构编码自然数结构的方式(解释和编码的区别,就像语言+公理,和结构的区别),哥德尔构造的自然数论命题,按照Σ解释自然数论的方式自动地转换为L表述的命题A,A在编码标准自然数结构的Σ的结构中为真。

还可以有另一种理解不完备定理的方式。哥德尔构造了一个命题,并分两种情况讨论。一种情况该命题在标准自然数结构中为真,另一种情况该命题在标准自然数结构中不真。对于前者,哥德尔证明该命题无法被给定的公理系统证明。对于后一种情况,他证明给定的公理系统有矛盾。

小结:实际上不完备定理的确让“为真”、“结构”这两个概念受到怀疑。数学上一般认为关于一个结构的命题要么为真要么不真,这也是结构这一概念的定义所包含的。这种观点叫柏拉图主义。但由于没有万全的确定一个命题为真的手段(之前认为证明是这样的手段),于是柏拉图主义受到一定的怀疑(但大多数数学家还是相信自然数结构的确定性的),而如果柏拉图主义“不对”,那结构这个概念也就没意义了。本质上也就是题主问的问题。

额外补充:什么是哥德尔命题

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

神秘组织之英吉利的决定 连载中
神秘组织之英吉利的决定
134***519_2547732139
“英吉利!你到底怎么了!”“对不起…”“英吉利…你到底怎么了…”“…………”
0.0万字4周前
青丝阙:挽红颜似水 连载中
青丝阙:挽红颜似水
宋衿衿
前世作为不争不抢的天才,什么都会却久居深闺,最后却落得个香消玉殒的下场;一朝重生到儿时,顾辞鸢表示再也不做什么大家闺秀,要狠,狠到无人敢欺,......
1.9万字4周前
快穿:每个世界都要被吃干抹净 连载中
快穿:每个世界都要被吃干抹净
揽风入我怀
她是一缕幽魂,因为自卑,在旁人的冷嘲热讽中投湖自尽。她的尸身葬于鱼腹中,她的家人对她的死视而不见。她恨自己的怯懦,却也无能为力。如果这时候,......
1.1万字4周前
辞渊之光 连载中
辞渊之光
szmkyyyy獩
“爱意随风起风止意难平”(已完结)“要做只属于你的月亮”“你喜欢我,就不要打我好不好?”“那你不听话怎么办”“口头教育一下就行……”“口头教......
8.0万字4周前
迷你特工队之我的大姐是神明 连载中
迷你特工队之我的大姐是神明
摆渡翎殉ROSE
皎洁月华下,惊鸿展翅,冷眸横阅。若非心善,则避之唯恐不及,然一旦触怒,后果自负。问:她神明与否?或许吧,月华如练,神明之眼,洞察力锐利,看透......
0.6万字4周前
冬梦小故事 连载中
冬梦小故事
烟落无言
王冬&梦红尘,大概一章一个故事文风摇摆不定·真的很喜欢少年乘风而起,不怕高空,不惧骄阳世界为我而生,我为世界之主少年的魄力,勇气,活力,生命......
0.7万字4周前