数学联邦政治世界观
超小超大

Triangle removal 引理 (3-1)

掌握 Szemerédi regularity lemma 以后我们来看如何使用它,如何用它来证明 triangle removal lemma

这篇我们学习在 Rusza-Szemerédi 的1978文章里的两个命题,证明的思路都差不多,两相对比正好可以体会 Szemerédi regularity lemma 的使用方法,证明的写法来自Additive Combinatorics

本篇中提及的图都指n 点图 G=G(V,E)

Triangle removal lemma

命题 对于任何给定 ε>0 都存在一个 δ>0 使得对任何图 G 如果至多包含 δn³ 个三角形,那可以移除 εn² 条边之后令 G 中无三角形

命题从直观上可以理解为当图比较稠密的时候,随机的来讲一条边可能会参与O(n) 数量级的三角形

如果我们可以把原图通过正则性引理划分,消除那些的不好的边以后剩余的部分是高度正则的,高度正则意味着一旦有一个三角形存在就会有数量多于 δn³ 的三角形,所以如果不好的边的数量级被 εn² 控制,而三角形数量不超过 δn³ 的话,它们一定会被消除掉

证明

粗略地说,G 的三个子集 X,Y,Z 间的边的密度分别是 dxʏ,dʏᴢ,dᴢx 的话,它们之间构成的三角形数量大约是 dxʏ dʏᴢ dᴢx |X||Y||Z|

精确的说,如果三个子集两两都是ε 正则,同时假设边的密度 dxʏ,dʏᴢ,dᴢx 至少都达到 2ε 的话,至少构成 (1–2ε)(dxʏ–ε)(dʏᴢ–ε)(dᴢx–ε)|X||Y||Z| 个三角形

用 Szemerédi regularity lemma 对图 G 做 ε/4 正则划分 V₁∪. . . ∪Vₖ

我们主要的想法是移除那些非正则划分的连接、低密度划分的连接、以及比较小的划分内的连接,它们都称为坏边,再利用剩余部分的高度正则性构造出很多的三角形

坏边 e 是

• e 连接某非 ε/4 正则对 (Vᵢ,Vj)

• e 连接某对 (Vᵢ,Vj) 满足 d(Vᵢ,Vj)≤ε/2

• e 连接某对 (Vᵢ,Vj) 满足 |Vᵢ|≤εn/4k 或者 |Vj|≤εn/4k

最多移除的边数

ε n² k ε n² εn n

(─k² • ─+( ) • ─ ─+k² • ─ ─)≤εn²

4 k² 2 2 k² 4k k

如果移除以后还存在某个三角形顶点分处于Vᵢ,Vj,Vₖ 的话, Vᵢ × Vj × Vₖ 会构成的三角形数量为

ε ε ε n

(1– ─) (─)³ (─ • ─)³

2 4 4 k

此时我们选择

ε ε ε

δ<(1– ─) (─)³ (─)³

2 4 4k

也即只要总的三角形数量不超过

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

赛少的身份2 连载中
赛少的身份2
玉梅619911653
这篇主要是以赛罗和天斗八怪的日常展开发展,是篇接着上一篇《赛少的身份》
0.1万字11个月前
沈月观影体 连载中
沈月观影体
杨都灵
香蜜沉沉烬如霜三生三世十里桃花琉璃美人煞天乩之白蛇传说陈情令镇魂,所有人观影现代
7.5万字11个月前
欢天喜地七仙女之地老天七仙 连载中
欢天喜地七仙女之地老天七仙
游客1582275745140
2.2万字11个月前
驯服(abo) 连载中
驯服(abo)
笙草
小王子得到了一只独属于他的白狮,他想要驯服他的桀骜,但狮子天生就是自由的,又有谁能锢住他,一切顺从只是狮子营造的假象……除非是狮子自愿带上⛓......
1.1万字11个月前
异能源 连载中
异能源
锦九七
之前喜欢你失忆后就喜欢你?不存在的,某女拖着行李箱回到了国内,但是异能已经爆发,他竟然不认识自己的未婚夫了?
5.9万字11个月前
我的脑洞天马行空 连载中
我的脑洞天马行空
激流暗涌
随便写写,喜欢的可以自己搬
0.6万字11个月前