数学联邦政治世界观
超小超大

格代数中的Fibonacci数列

降集:令L 是一个格代数, A⊆L ,定义 A↓={x∈L:∃α∈A,x≤ʟ α} 是 A 的降集。令 𝕺(L)表示 L 的全部降集。

定理:定义如下格代数Lₙ={α₁,· · ·,αₙ,b₁,· · ·,bₙ},满足对于任意 i≤n ,都有αᵢ<bᵢ 和 αᵢ<bᵢ₊₁ 。求证: |𝕺(Lₖ)|=fₖ₊₂ ,其中 f₁=f₂=1 且 fₖ₊₂=fₖ₊₁+fₖ 是Fibonacci数列。

证明:首先给出上述格代数Lₙ 的Hase图

b₁ b₂ b₃ bₙ

↓↗↘↗ · · · ↙↘

α₁ α₂ bₙ₋₁ αₙ.

为了证明定理,我们首先证明如下引理:对于任意格代数L ,都有 |𝕺(L)|=|𝕱|,其中 𝕱 表示 L 中全体反链构成的集合。引理的证明很简单:必要性,每个反链都唯一地诱导一个降集;反过来假设 A⊆L 是一个降集,令 ℭᴀ={B⊆A:B↓=A↓},定义 ℭᴀ 的偏序为 P⊆Q ↔ Q ≤ ℭᴀ P,根据佐恩引理,我们可以得到 (ℭᴀ,ℭᴀ) 的一个极大元 B ,如果 B 不是反链,那么存在 x,y∈B 满足 x<ʟ y,因此 (B−{y})↓=B↓ ,这与 B 是极大元矛盾,反证充分性成立。因此引理成立。(根据格论的对偶原理,我们还可以定义“升集”,并证明升集的数量和反链的数量一样)。

根据引理,定理就转化为Lₖ 的反链的个数是多少。下面利用数学归纳法证明: k=1 时显然定理成立。假设 Lₖ 满足定理,求 Lₖ₊₁ 满足定理。设 A⊆Lₖ₊₁ 是一条反链,如果 αₖ₊₁∉ A,那么 A∈𝕱(Lₖ),其中 𝕱(Lₖ) 是 Lₖ 的全体反链;如果 bₖ₊₁∉A 但 αₖ₊₁∈A ,那么由于 αₖ₊₁ 与 Lₖ 中全部元素都没有序关系,因此这样的 A 有 |𝕱(Lₖ)| 个;如果 bₖ₊₁∈A ,此时 αₖ∈A ,不能看出,这样的反链 A 的个数=│{B∈𝕱(Lₖ):αₖ∈B}│ ,即 |𝕱(Lₖ₋₁)| ,那么 |𝕱(Lₖ)|=2|𝕱(Lₖ)|+|𝕱(Lₖ₋₁)| ,由递归可得 |𝕱(Lₖ)|=fₖ₊₁+2fₖ₊₂=fₖ₊₄ ,由数学归纳法可得定理成立。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

铲妹封面铺 连载中
铲妹封面铺
许铲妹
下单看第一章
0.1万字1年前
落入幻渊 连载中
落入幻渊
语流水
不好看,勿入架空/科研博士&试验品沈流&伊淇——实验体编号0177,那就叫,伊淇吧……身为怪物的伊淇被当成实验品,饱受痛苦折磨多年,直到遇到......
1.2万字1年前
神兽金刚之前缘后续 连载中
神兽金刚之前缘后续
endil
“公主,他…”“我知道”
3.3万字1年前
神女下界1寻回 连载中
神女下界1寻回
海盐不闲
“洛瑶海心镯交出来”“休想!”“姐姐好我叫小雪”“大人”“把碎片夺来海心镯可以不要”“是”碎片争夺战即将开始“森罗万象你逃不了!”“深海旋涡......
3.2万字1年前
幻影忍者……封印的密秘 连载中
幻影忍者……封印的密秘
Rkai
关于凯的秘密,你想要了解吗?作品里面凯的左向CP都有,主要还是劳凯和寇凯哈,家人们
1.2万字1年前
多金少女 连载中
多金少女
安无幽
谁能想到,姚瑶有一天居然会为怎么花钱而头疼……
7.0万字1年前