数学联邦政治世界观
超小超大

Triangle removal 引理 (3-2)

ε ε ε

(1– ─) (─)³ (─)³ n³我们总可以通过移除

2 4 4k

那些坏边消除所有的三角形,否则如果无法消除的话,剩余的数量都会超过

命题证完

关于配对的命题

如果图G 的一组边 {e₁,. . .,eₖ}两两不共点,而且这些顶点在图中不相连,它们被称为一个配对

命题 如果图 G 的边是 n 个配对的并集,那么 |E|=ᴏₙ→∞(n²)

配对里面的那些点相互之间最多一个连接,说明它们是稀疏的,或者很不随机

这个命题直观上说的是,如果图 G 的边可以分成 n 个配对,说明单个的配对是比较大的,而 |E|=oₙ→∞(n²) 不成立则意味着图稠密,稠密的图中是不可能存在大范围的配对的,它们的顶点一定会被连起来

为了证明这一点我们需要把这个稠密图通过正则性引理划分,然后消除那些不好的边,让剩余的部分高度正则,如果某个配对还留在里面,那一定会导致矛盾

证明

假设命题不成立,对于某个固定的ε>0 只要大图 G 至少有 εn² 条边,它都可以分解为 n 个配对的并集

用 Szemerédi regularity lemma 对图 G 做 ε/6 正则划分 V₁∪. . .∪Vₖ

具体的做法是移除那些非正则划分的边、低密度划分的边、以及所有划分内的边,这些称为坏边,剩余的部分高度正则,如果它们在某个配对当中也不少,那它们的随机属性将与配对的系数属性相矛盾

坏边 e 是

• e连接某非 ε/6 正则对 (Vᵢ,Vj)

• e连接某对 (Vᵢ,Vj) 满足 d(Vᵢ,Vj)≤ε/3

• e在某 Vᵢ 中

去除的坏边总数为

ε k n² ε n² n/k ε

(─ ( ) ─+─k² ─+k( ))≤ ─n²

3 2 k² 6 k² 2 2

我们当然可以控制 k 足够大使得 1/k 相对 ε 足够小满足不等式

剩余好边≥εn²/2 ,故至少有一个配对 F 包含至少 εn²/2n=εn/2 条好边

那些至少包含F 中 ε|Vᵢ|/3 个点的划分集 Vᵢ 称作糟糕的集合,我们如果删去所有糟糕的 Vᵢ 在 F 中的部分连同边,最多删去 Σᵢ ε|Vᵢ|/3=εn/3 条边,所以 F 至少还剩一条边,由定义这条边会连接两个不糟糕的集合 Vᵢ,Vj ,这两个集合满足 d(Vᵢ,Vj)≥ε/3 同时是 ε/6 正则的,令 Vᵢ,ғ=Vᵢ∩F,Vj,ғ=Vj∩F 于是

ε ε

d(Vᵢ,ғ,Vj,ғ)≥d(Vᵢ,Vj)– ─ ≥ ─

6 6

• 一方面,因为 F 是配对,所以 Vᵢ,ғ 和 Vj,ғ 的边数不能超过 |Vᵢ,ғ| ,所以 d(Vᵢ,ғ,Vj,ғ) 1

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
19.2万字5个月前
末世重生之皓月空间 连载中
末世重生之皓月空间
是蛋壳吖
沈丹灵死了,在末世的第四年,因为一个馒头。
3.1万字5个月前
怪物大师之布布路的姐姐 连载中
怪物大师之布布路的姐姐
我的oc叫林官
今天摩尔本字基地新来了个转校生,竟然是布布路的姐姐,会发生什么事情呢?自己去看!
0.5万字5个月前
十季予你 连载中
十季予你
找耶
我叫水十季,这里叫曲琼大陆是我的家,人们在成年那一天都会进行一次灵力觉醒仪式,如果有灵力就会成为修士,如果天赋够好就可以进入苍蓝学院学习,快......
11.8万字5个月前
十二星座:觅友 连载中
十二星座:觅友
沐芷菁芜
(需知:人物介绍都是我的设定,请勿代入自己!!!当然你要是想对号入座我也没办法)当昔日的朋友分崩离析,甚至处于敌对面,你会怎么做?『白羊』要......
4.5万字5个月前
快穿之倒追那个男人 连载中
快穿之倒追那个男人
爱吃香菜的螺蛳粉
第一个世界:那个校园里的小可怜第二个世界:那个阴阳怪气的上司
2.2万字5个月前