数学联邦政治世界观
超小超大

Triangle removal 引理 (3-2)

ε ε ε

(1– ─) (─)³ (─)³ n³我们总可以通过移除

2 4 4k

那些坏边消除所有的三角形,否则如果无法消除的话,剩余的数量都会超过

命题证完

关于配对的命题

如果图G 的一组边 {e₁,. . .,eₖ}两两不共点,而且这些顶点在图中不相连,它们被称为一个配对

命题 如果图 G 的边是 n 个配对的并集,那么 |E|=ᴏₙ→∞(n²)

配对里面的那些点相互之间最多一个连接,说明它们是稀疏的,或者很不随机

这个命题直观上说的是,如果图 G 的边可以分成 n 个配对,说明单个的配对是比较大的,而 |E|=oₙ→∞(n²) 不成立则意味着图稠密,稠密的图中是不可能存在大范围的配对的,它们的顶点一定会被连起来

为了证明这一点我们需要把这个稠密图通过正则性引理划分,然后消除那些不好的边,让剩余的部分高度正则,如果某个配对还留在里面,那一定会导致矛盾

证明

假设命题不成立,对于某个固定的ε>0 只要大图 G 至少有 εn² 条边,它都可以分解为 n 个配对的并集

用 Szemerédi regularity lemma 对图 G 做 ε/6 正则划分 V₁∪. . .∪Vₖ

具体的做法是移除那些非正则划分的边、低密度划分的边、以及所有划分内的边,这些称为坏边,剩余的部分高度正则,如果它们在某个配对当中也不少,那它们的随机属性将与配对的系数属性相矛盾

坏边 e 是

• e连接某非 ε/6 正则对 (Vᵢ,Vj)

• e连接某对 (Vᵢ,Vj) 满足 d(Vᵢ,Vj)≤ε/3

• e在某 Vᵢ 中

去除的坏边总数为

ε k n² ε n² n/k ε

(─ ( ) ─+─k² ─+k( ))≤ ─n²

3 2 k² 6 k² 2 2

我们当然可以控制 k 足够大使得 1/k 相对 ε 足够小满足不等式

剩余好边≥εn²/2 ,故至少有一个配对 F 包含至少 εn²/2n=εn/2 条好边

那些至少包含F 中 ε|Vᵢ|/3 个点的划分集 Vᵢ 称作糟糕的集合,我们如果删去所有糟糕的 Vᵢ 在 F 中的部分连同边,最多删去 Σᵢ ε|Vᵢ|/3=εn/3 条边,所以 F 至少还剩一条边,由定义这条边会连接两个不糟糕的集合 Vᵢ,Vj ,这两个集合满足 d(Vᵢ,Vj)≥ε/3 同时是 ε/6 正则的,令 Vᵢ,ғ=Vᵢ∩F,Vj,ғ=Vj∩F 于是

ε ε

d(Vᵢ,ғ,Vj,ғ)≥d(Vᵢ,Vj)– ─ ≥ ─

6 6

• 一方面,因为 F 是配对,所以 Vᵢ,ғ 和 Vj,ғ 的边数不能超过 |Vᵢ,ғ| ,所以 d(Vᵢ,ғ,Vj,ғ) 1

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿之宿主又又又开虐了 连载中
快穿之宿主又又又开虐了
无忧岁安
倾瑶,快穿界攻略组的大佬,没有过败绩。又一次任务完成后,她选择带薪休假,寻了个小世界过上了人上人的生活。直至她的统子到小世界寻她……
0.4万字4周前
娱乐圈:一帮超雄小小孩 连载中
娱乐圈:一帮超雄小小孩
洁厕灵三金
HICE三代十多个小孩子全是精力旺盛的超雄!老板柏乐时and工作人员:已死,勿念
0.1万字4周前
星辰遇你 连载中
星辰遇你
慕星辰291
在一片神秘的大陆上,生活着一些不一样的人,他们用梦魇争斗比赛,在这里,每个人都有自己的梦魇,慕星辰在这里遇到了他,那个奇奇怪怪的人,天之娇女......
22.4万字4周前
我是无支祁 连载中
我是无支祁
爱玩火的猫
琉璃美人煞里无支祁紫狐这一对儿,真是意难平。写个续集好了
10.2万字4周前
大灵师缠妻上瘾 连载中
大灵师缠妻上瘾
七七葵
她拜月族不详的巫女,他是异世权倾天下,受万人敬仰的大灵师宿命的轮回,千万年的不变我缠定你
16.6万字4周前
我,伊蒂丝女皇之魔法学院 连载中
我,伊蒂丝女皇之魔法学院
梦溪超可爱
1.5万字4周前