数学联邦政治世界观
超小超大

特殊篇章(数学定理)一 (8-7)

(22) dω²₁

K=−─────.

ω¹∧ω²

遗憾的是,上式只对正交标架成立, 因此从(22)本身我们尚无法确定这样定义的量是否几何量. 所以,我们采用另一种与标架选取无关的做法.

设 U 是曲面 S 的一个坐标邻域, {e₁,e₂} 是坐标邻域 U 上的任意切标架场并且 dr=ωαeα. 那么黎曼度量可以表示为

ds²=gαᵦωαωβ,

其中 gαβ=⟨eα,eᵦ⟩ . 假设联络 D 在该标架下可以表示为

(23) Deα=ωβαeᵦ.

由于 D 是相容联络,因此

(24) dgαᵦ=ωγαgᵧᵦ+ωγβgᵧα.

注意, 当 {e₁,e₂} 是正交标架时,(24)等价于 ωβα+ωαᵦ=0,即联络系数 ωβα 关于指标是反对称的. 这时, 非零的联络系数只有 ω²₁=−ω¹₂. 根据(23),此时联络 D 由 ω²₁ 完全确定, 这是(22)成立的一个基础. 因此,对一般的标架(22)是不一定成立的. (24)可以用矩阵表示为

(25) dG=ωG+Gωᵀ,

其中 G=(gᵢⱼ) 称为度量矩阵,ω=(ωᵢⱼ) 称为联络 D 在标架 {e₁,e₂} 下的联络矩阵. 对(25)求外微分得到并利用 d²=0 得到

0=d(dG)=dωG−ω∧dG+dG∧ωᵀ+Gdωᵀ=dωG−ω∧(ωG+Gωᵀ)+(ωG+Gωᵀ)∧ωᵀ+Gdωᵀ=(dω−ω∧ω)G+G(dω−ω∧ω)ᵀ.

定义联络 D 的曲率矩阵为 Ω=dω−ω∧ω,那么上式简化为

(26) ΩG+GΩᵀ=0.

若令 Ωαᵦ=Ωγαgᵧᵦ,那么(26)的意义就是 (Ωαᵦ) 是一个反对称矩阵. 为了了解 Ω 称为曲率矩阵的合理性, 我们观察 Ω 的分量

Ωαᵦ=dωβα−ωγα∧ωβᵧ

以及结构方程(2)在任意标架下的一般形式

dωʲᵢ−ωᵏᵢ∧ωʲₖ=0

并发现, 对于欧式空间 ℝ³ 的参数曲面 S,曲率矩阵的分量

Ωβα=ω³α∧ωβ₃.

特别地, 将 Ω²₁=ω³₁∧ω²₃ 与(6)对比就不难看出将 Ω 称作曲率矩阵的合理性. 只不过, 在正交标架的情况下, 曲面的弯曲性质由 Ω²₁=dω²₁ 完全刻画;而对于任意标架,曲面的弯曲性质需要用整个曲率矩阵刻画.

现在, 我们来考察曲率矩阵在标架变换时的变换规律. 假设 {e~₁,e~₂} 是另一个切标架场, 满足关系

(27)(e~₁) (e₁)

(e~₂)=A (e₂).

对(27)求协变导数得到

D(e~₁) (e~₁)

(e~₂)=ω~ (e~₂)

=ω~A(e₁) (e₁)

(e₂)=dA (e₂)

+Aω(e₁)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

噩临 连载中
噩临
烧焦的煤炭
一些oc,原创,标题你让我再想想
1.3万字1年前
星变(双生) 连载中
星变(双生)
苦查子
Thetrappedbrastinthecagealwaysyearnsfofreedom.(笼中的困兽永远渴望自由)我很希望我能没有这个身......
0.5万字1年前
11号公寓:真相(修文中……) 连载中
11号公寓:真相(修文中……)
卡布叻_晚念
俩个版本的续写(故事续写/杀手团)故事续写:11号公寓:真相【已完结】杀手故事:11号杀手团【已完结】————————————————11号......
7.0万字1年前
重生校园男神吊炸天 连载中
重生校园男神吊炸天
萧玄凉
大女主,女扮男装,半群像,全能,现代玄幻,半娱乐圈1v1上辈子她是商业帝国的大亨,亦有多重身份,意外重生到一位伪少年身上,替他完成愿望,让他......
10.0万字1年前
祖师爷她只想闲鱼 连载中
祖师爷她只想闲鱼
瞳小七
修炼万年,被迫穿越,锦思量表示:谢邀,只想咸鱼。——作为一个熬死了几十个世纪的修仙大佬,锦思量因为黑白无常失误,被迫穿越一本小说,顺带绑定了......
11.9万字1年前
镜挽令—城姬 连载中
镜挽令—城姬
sc半缘
鱼遇上了大海,就能拥有畅游的空间;手扶上了琴弦,就能弹奏出优美的乐章;笔遇上了白纸,就能勾勒出人间的不凡。那么我遇上了你......
10.2万字1年前