数学联邦政治世界观
超小超大

特殊篇章(数学定理)一 (8-7)

(22) dω²₁

K=−─────.

ω¹∧ω²

遗憾的是,上式只对正交标架成立, 因此从(22)本身我们尚无法确定这样定义的量是否几何量. 所以,我们采用另一种与标架选取无关的做法.

设 U 是曲面 S 的一个坐标邻域, {e₁,e₂} 是坐标邻域 U 上的任意切标架场并且 dr=ωαeα. 那么黎曼度量可以表示为

ds²=gαᵦωαωβ,

其中 gαβ=⟨eα,eᵦ⟩ . 假设联络 D 在该标架下可以表示为

(23) Deα=ωβαeᵦ.

由于 D 是相容联络,因此

(24) dgαᵦ=ωγαgᵧᵦ+ωγβgᵧα.

注意, 当 {e₁,e₂} 是正交标架时,(24)等价于 ωβα+ωαᵦ=0,即联络系数 ωβα 关于指标是反对称的. 这时, 非零的联络系数只有 ω²₁=−ω¹₂. 根据(23),此时联络 D 由 ω²₁ 完全确定, 这是(22)成立的一个基础. 因此,对一般的标架(22)是不一定成立的. (24)可以用矩阵表示为

(25) dG=ωG+Gωᵀ,

其中 G=(gᵢⱼ) 称为度量矩阵,ω=(ωᵢⱼ) 称为联络 D 在标架 {e₁,e₂} 下的联络矩阵. 对(25)求外微分得到并利用 d²=0 得到

0=d(dG)=dωG−ω∧dG+dG∧ωᵀ+Gdωᵀ=dωG−ω∧(ωG+Gωᵀ)+(ωG+Gωᵀ)∧ωᵀ+Gdωᵀ=(dω−ω∧ω)G+G(dω−ω∧ω)ᵀ.

定义联络 D 的曲率矩阵为 Ω=dω−ω∧ω,那么上式简化为

(26) ΩG+GΩᵀ=0.

若令 Ωαᵦ=Ωγαgᵧᵦ,那么(26)的意义就是 (Ωαᵦ) 是一个反对称矩阵. 为了了解 Ω 称为曲率矩阵的合理性, 我们观察 Ω 的分量

Ωαᵦ=dωβα−ωγα∧ωβᵧ

以及结构方程(2)在任意标架下的一般形式

dωʲᵢ−ωᵏᵢ∧ωʲₖ=0

并发现, 对于欧式空间 ℝ³ 的参数曲面 S,曲率矩阵的分量

Ωβα=ω³α∧ωβ₃.

特别地, 将 Ω²₁=ω³₁∧ω²₃ 与(6)对比就不难看出将 Ω 称作曲率矩阵的合理性. 只不过, 在正交标架的情况下, 曲面的弯曲性质由 Ω²₁=dω²₁ 完全刻画;而对于任意标架,曲面的弯曲性质需要用整个曲率矩阵刻画.

现在, 我们来考察曲率矩阵在标架变换时的变换规律. 假设 {e~₁,e~₂} 是另一个切标架场, 满足关系

(27)(e~₁) (e₁)

(e~₂)=A (e₂).

对(27)求协变导数得到

D(e~₁) (e~₁)

(e~₂)=ω~ (e~₂)

=ω~A(e₁) (e₁)

(e₂)=dA (e₂)

+Aω(e₁)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

终焉的选择 连载中
终焉的选择
黑米糕中的西米露
喵~论我前世与你几次回眸今生是否还能厘清缘由情是否依旧心是否依旧偏爱是否依旧我们却心照不宣都沉默了好久论我们这宿命要转多久来生是否还红着脸牵......
0.6万字4周前
魔王之恋返场老人物 连载中
魔王之恋返场老人物
开心_53013309082882668
魔王之恋的返场老人物
0.0万字4周前
救赎:再次拥抱阳光之重生为团宠 连载中
救赎:再次拥抱阳光之重生为团宠
闪夜星薇
!!!注意!!!!!!!简介必看!!!!【本书原创,请勿抄袭】【如有雷同,纯属巧合】【本书是由漫画改编而成的小说】伊顿贝尔帝国的二公主艾丽莎......
0.1万字4周前
欢喜七仙缘:你若不离,我定不弃 连载中
欢喜七仙缘:你若不离,我定不弃
南笙菇凉i
1.1万字4周前
猫武士跳跃性外传之风起云涌 连载中
猫武士跳跃性外传之风起云涌
灰爪的火星
大概是是十一部曲十二部曲的故事左右吧。。。
0.2万字4周前
收服僵尸小组 连载中
收服僵尸小组
IIOVE小胖
带您进入一个不一样的僵尸世界,我们一起来守护世界和平吧!
5.3万字4周前