因为正交标架场 {e₁,e₂,e₃} 实际上在 S−∪{rᵢ} 上有定义, 所以(13)在 ε → 0 的过程中始终是成立的. 由于 K 是在整个 S 上定义的连续可微函数,所以
lim
ε → 0 ∫s−⋃ᵢDᵢ Kdσ=∫ₛKdσ.
而(13)式末端在 ε → 0 时正是 2π∑ʳᵢ₌₁Iᵣ₁ (见(12)),因此
1 ᵣ
─ ∫ₛKdσ=∑i=1r Iᵣᵢ.
2π ᵢ₌₁
上式的左边与切向量场 X 无关. 我们在曲面 S 上造一个特殊的切向量场:取 S 的一个三角剖分(因为 S 是紧致的,它是可剖的),造光滑的切向量场 X,使它以上述剖分的各维面的重心为奇点,并且使它在二维面、一维面及零维面的重心处的指标分别是 +1,−1 和 +1 (如图1所示). 因此
∑Iᵣᵢ=f−e+υ=χ(S),
其中 f,e,υ 分别是 M 的剖分的二维面、一维面和零维面的个数. 所以
1
─ ∫ₛKdσ=χ(S).
2π
在上面的证明中我们已经得到Hopf指标定理:
推论2. 设在紧致的定向的二维曲面上有一个光滑切向量场,其奇点个数有限,则它在各奇点的指标和等于该曲面的Euler示性数.
4. 联络
分析Gauss-Bonnet定理的外蕴证明我们发现, 只有两处用到了曲面 S 嵌入在三维欧式空间 ℝ³ 这一事实. 第一个是在对标架场求微分时得到标架的微分 deα. 由于微分的结果中包含法向分量 e₃, 因此 deα 不是内蕴量. 当然,这一点可以很容易通过将微分替换为协变微分来解决. 对于曲面 S 上的任意光滑切向量场 υ, 定义其协变微分 Dυ 为其普通微分在切平面内的投影,即
(14)Dυ=⟨dυ,e₁⟩+⟨dυ,e₂⟩.
显然,这样的定义不依赖于标架场的选取. 由于标架的协变微分 Deα 不包含法向分量,因此是内蕴的. 需要注意的是, Deα 虽然是内蕴的, 但在定义它的过程中用到的仍然是外蕴的方法, 因为(14)中在对 υ 求微分时需要比较曲面 S 不同切平面内的向量, 这对于嵌入在 ℝ³ 的曲面 S 来说当然是没什么问题了. 因为我们可以自然地将 S 的切平面内的向量看作 ℝ³ 中的向量,然后对它们进行比较. 当时对于一般的抽象Riemman流形,其上各点的切空间并不能通过这样一个自然的方式联系起来. 因此, 构造Gauss-Bonnet定理内蕴证明的第一个关键点就是利用内蕴的方法来定义协变微分 D,这便是联络的概念.
根据微分算子 d 的性质, 容易证明协变微分 D 具有下列性质.
命题3. 设 υ₁ 和 υ₂ 是曲面 S 上的两个光滑切向量场, f:S → ℝ 是 S 上的光滑函数,则由(14)定义的协变微分满足下列两个性质:
(1) D(υ₁+υ₂)=Dυ₁+Dυ₂;
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。