数学联邦政治世界观
超小超大

Stone-Weierstrass定理(数学解释)一 (6-2)

由于函数 f=f(x) 在 [0,1] 上连续, 从而是一致连续的, 因此对任意 ε>0, 存在 δ>0, 只要 |x−y|<δ 就有 |f(x)−f(y)|<ε. 此外, 它也是有界的, 即存在 0<M<∞ 使得 |f(x)|≤M. 于是, 对于任意 x∈[0,1],

|f(x)−Bₙ(x)|=|∑

ₖ₌₀

[f(x)−f(k

n)]Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ|≤∑

{k:|(k/n)−x|≤δ}|f(x)−f(k

n)|Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ+

{k:|(k/n)−x|>δ}|f(x)−f(k

n)|Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ≤ε+2MP(|K

─−x|≥δ)

n

2M M

≤ε+──=ε+──.

4nδ² 2nδ²

也就是说, 对于Bernstein多项式,

limₙ→∞|f(x)−Bn(x)|=0,

对所有 x∈[0,1] 成立, 这就证明了Weierstrass定理.

调和分析的方法

引理3. 设 {Kδ}δ>0 是实直线 ℝ 上的高斯核函数族, 即

Kδ(x)=δ⁻¹/²e⁻πx²/δ,∀δ>0.

那么它满足下列性质:

(a) 对所有 δ>0 ,

∫∞₋∞Kδ(x)dx=1.

(b) 存在 M>0 使得对于所有 δ>0

∫∞₋∞|Kδ(x)|dx≤M.

(c) 对每一个 η>0, 当 δ→∞ 时

∫|x|>η|Kδ(x)|dx→0.

引理4. 若 f 是 ℝ 上具有紧支撑的连续函数, 那么, 当 δ→0 时, f ∗ Kδ 一致收敛到 f. 这里 ∗ 表示卷积, 即

(f ∗ Kδ)(x)=∫∞₋∞f(x−t)Kδ(t)dt.

证明. 首先, f 在 ℝ 上是一致连续的, 即对于任意 ε>0 存在不依赖于 x 的 η>0 使得只要 |x−y|<η 就有 |f(x)−f(y)|<ε. 其次 f 是有界的, 即存在 M≤∞ 使得 |f(x)|≤M 对所有 x∈[α,b] 成立. 利用高斯核函数族的第一个性质, 我们得到

(f∗Kδ)(x)−f(x)=∫∞₋∞Kδ(t)[f(x−t)−f(x)]dt,

由于 Kδ≥0,因此

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

这个他又笨又倔强 连载中
这个他又笨又倔强
珂珂耐耐
这是一个吸血鬼与吸血鬼猎人共同存在的世界,穿越而来的墨舞依,在这里邂逅了一段特殊的感情。
7.4万字4周前
和四季的故事 连载中
和四季的故事
狐语星河
讲的是语星河,肖言,白安,添田路过一个四季为主题的店,店里的物品都是春夏秋冬样式的,店里总共有四个老板。他们分别是春夏秋冬的孩子。
0.1万字1个月前
星拟:正在努力加载中…… 连载中
星拟:正在努力加载中……
桶中加尿泼谁谁发疯
正在努力拉屎中……应该可以算是oc
0.2万字4周前
暗影游戏:无声的谋杀 连载中
暗影游戏:无声的谋杀
是洛宝吖
0.8万字4周前
天乩之斩荒与白夭夭恋 连载中
天乩之斩荒与白夭夭恋
万般皆是奢求
主角:斩荒,白夭夭配角:小青,齐霄,许宣,冷凝……这部作品是已白夭夭在地火中为冷凝疗伤开始写的。
4.2万字4周前
花程恋之刺客桃花 连载中
花程恋之刺客桃花
长眠清风
总有一天你会违背本心,人心都是善变的。———离有时候你不能只相信自己看到的,事实总会颠覆你的想象。———月无双世上没有后悔药,自己做的错事,......
5.8万字4周前