数学联邦政治世界观
超小超大

Stone-Weierstrass定理(数学解释)一 (6-1)

介绍:Stone-Weierstrass定理以及度量空间C[a,b]可分性的证明

本文给出Weierstrass逼近定理的三种证明方法. 第一种方法是概率论的方法, 它用到二项分布以及Chebyshev不等式; 第二种方法是调和分析的方法, 它用到高斯核函数族的性质; 第三种方法是拓扑的方法, 它直接证明Weierstrass逼近定理的推广Stone-Weierstrass定理. 最后, 我们利用Weierstrass逼近定理给出度量空间 (C[α,b],d∞) 可分性的一个证明.

Weierstrass逼近定理陈述如下.

定理1 (Weierstrass逼近定理). 设 f 是区间 [α,b] 上的连续实值函数. 那么,对每一个 ε>0,存在多项式函数 p 使得对于所有 x∈[α,b], 有

|f(x)−p(x)|<ε.

概率论的方法

引理2 (Chebyshev不等式). 设 X 是一个随机变量, 具有有限的期望 μ 和有限非零方差 σ². 那么对于任意实数 k>0,

P(|X−μ|≥k)≤σ2

k2.

证明. 利用条件期望直接计算得到:

σ²=E[(X−μ)²]

=E[(X−μ)²||X−μ|≥k]

⋅P(|X−μ|≥k)

+E[(X−μ)²||X−μ|<k]

⋅P(|X−μ|<k)

≥k²P[|X−μ|≥k]+0

⋅P(k<|X−μ|)

=k2P[|X−μ|≥k].

两边同除以 k² 就得到Chebyshev不等式.

Weierstrass逼近定理的证明(GTM95 Chapter 1). 不失一般性, 我们假设 [α,b]=[0,1]. 任取区间 [0,1] 上的连续函数 f=f(x). 设 K 是一个随机变量, 服从参数为 n 和 x 的二项分布, 即

P(K=k)=Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ.

那么

E[f(K

n)]=Bₙ(p),

其中

Bₙ(x)=∑ⁿₖ₌₀f(k

n)Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ

称为Bernstein多项式.

我们知道二项分布的均值和方差分别是 E(K)=nx 和 D(K)=nx(1−x). 利用Chebyshev不等式我们有

P(|K

n−x|≥δ)=P(|K−nx|≥nδ)

nx(1−x) 1

≤────≤───.

n²δ² 4nδ²

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

十二星,命定守护者 连载中
十二星,命定守护者
羊崽崽a
这本书是解释作者小号“丘妄雪”那号上«新葫,命中塔罗»的十二星座守护者的故事,主要是要怎么成为星界十二星座守护者的,然后为什么会变坏。之所以......
2.8万字4周前
凌落月华笑清风 连载中
凌落月华笑清风
白鲸啊
这里,有的不只是爱情,更有坚定的友情。一段迷离的梦境,重现了一万年前的爱恨情仇阴谋诡计,拨开层层迷雾,却道是天命难违宿命百般捉弄。统治者的诡......
17.1万字4周前
穿越凹凸世界之我是紫堂幻 连载中
穿越凹凸世界之我是紫堂幻
星辰变雨落
啦啦啦,开新坑(本文讲述的是凹凸世界的编剧人穿越到凹凸世界,并变成了紫堂幻但性格是旧设紫堂幻很腹黑)
1.0万字4周前
缭绕青丝系君心 连载中
缭绕青丝系君心
�� 倾一世芳华��
蛮荒小妖洛初儿得神界青龙上神点化成仙,历劫人间收了个世间妖孽小徒儿——商锦旭,搅的天上人间风云四起——“阿初,我从未把你当师傅。”青云志台上......
20.0万字4周前
阿芹寻梦记 连载中
阿芹寻梦记
江南云梦
这是一部长篇寻梦记,你没看错,就是做梦的梦,写的都是关于梦境的事,或许你可以把它当做一个解梦合集......
8.3万字4周前
末日降临之崩坏龙王 连载中
末日降临之崩坏龙王
九冥玄月
当末日遇到龙族and人族女霸会发生怎么样的事?[推文新书《死亡维度笔记》]
5.0万字4周前