数学联邦政治世界观
超小超大

Stone-Weierstrass定理(数学解释)一 (6-1)

介绍:Stone-Weierstrass定理以及度量空间C[a,b]可分性的证明

本文给出Weierstrass逼近定理的三种证明方法. 第一种方法是概率论的方法, 它用到二项分布以及Chebyshev不等式; 第二种方法是调和分析的方法, 它用到高斯核函数族的性质; 第三种方法是拓扑的方法, 它直接证明Weierstrass逼近定理的推广Stone-Weierstrass定理. 最后, 我们利用Weierstrass逼近定理给出度量空间 (C[α,b],d∞) 可分性的一个证明.

Weierstrass逼近定理陈述如下.

定理1 (Weierstrass逼近定理). 设 f 是区间 [α,b] 上的连续实值函数. 那么,对每一个 ε>0,存在多项式函数 p 使得对于所有 x∈[α,b], 有

|f(x)−p(x)|<ε.

概率论的方法

引理2 (Chebyshev不等式). 设 X 是一个随机变量, 具有有限的期望 μ 和有限非零方差 σ². 那么对于任意实数 k>0,

P(|X−μ|≥k)≤σ2

k2.

证明. 利用条件期望直接计算得到:

σ²=E[(X−μ)²]

=E[(X−μ)²||X−μ|≥k]

⋅P(|X−μ|≥k)

+E[(X−μ)²||X−μ|<k]

⋅P(|X−μ|<k)

≥k²P[|X−μ|≥k]+0

⋅P(k<|X−μ|)

=k2P[|X−μ|≥k].

两边同除以 k² 就得到Chebyshev不等式.

Weierstrass逼近定理的证明(GTM95 Chapter 1). 不失一般性, 我们假设 [α,b]=[0,1]. 任取区间 [0,1] 上的连续函数 f=f(x). 设 K 是一个随机变量, 服从参数为 n 和 x 的二项分布, 即

P(K=k)=Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ.

那么

E[f(K

n)]=Bₙ(p),

其中

Bₙ(x)=∑ⁿₖ₌₀f(k

n)Cᵏₙxᵏ(1−x)ⁿ⁻ᵏ

称为Bernstein多项式.

我们知道二项分布的均值和方差分别是 E(K)=nx 和 D(K)=nx(1−x). 利用Chebyshev不等式我们有

P(|K

n−x|≥δ)=P(|K−nx|≥nδ)

nx(1−x) 1

≤────≤───.

n²δ² 4nδ²

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

和四季的故事 连载中
和四季的故事
狐语星河
讲的是语星河,肖言,白安,添田路过一个四季为主题的店,店里的物品都是春夏秋冬样式的,店里总共有四个老板。他们分别是春夏秋冬的孩子。
0.1万字9个月前
还珠格格之乾燕子 连载中
还珠格格之乾燕子
游客1571816434907
这人很懒,啥都没写。
0.1万字8个月前
神兽金刚之林聪and.叶辉 连载中
神兽金刚之林聪and.叶辉
残梦碎城
1.1万字8个月前
星拟故事 连载中
星拟故事
白墨的黑色星空
如题,就是星座拟人化的故事小短篇,当然长的也是分成好几个写,这回我保证全是自己想的,没有任何抄袭,LOFTER上的我只看素材,写的都不一样,......
2.6万字8个月前
窥世 连载中
窥世
蓝桉349
(暂时停更)
5.8万字8个月前
走过奈何桥去地狱 连载中
走过奈何桥去地狱
白画眉
奈何桥就像一条黑蟒,在白色阴泠的雾里,时隐时现,十分的诡异。孟婆说:“你们必须分开,还要喝下这碗忘忧汤。”秦雨和方佳佳互相凝视,牵手跳下奈何......
11.1万字8个月前