数学联邦政治世界观
超小超大

Lifting the exponent:LTE引理 (2-1)

记号 . υₚ(α)为α的标准分解式中素数p的次数;δₚ(α)为满足αᵏ≡1(mod p)的最小正整数k;φ(n)为Euler函数.

LTE引理 . p为素数,α,b∈ℤ,n≥1,满足p∣α−b,(p,αb)=1 .

( 1 ) 若p≥3,则

υₚ(αⁿ−bⁿ)=υₚ(α−b)+υₚ(n)

( 2 ) 若p=2,则

υ₂(αⁿ−bⁿ)

n

={υ₂(α²−b²)+υₚ(─)2∣n

2

{υ₂(α−b) 2 ∤ n

推论 .p为奇素数,α,b∈ℤ,n 为正奇数,满足p∣α+b,(p,αb)=1 . 则

υₚ(αⁿ+bⁿ)=υₚ(α+b)+υₚ(n)

引理1 . p为素数,α,b∈ℤ,n≥1,满足p∣α−b,(p,αb)=1,且(n,p)=1,则有

υₚ(αⁿ−bⁿ)=υₚ(α−b)

证明: 有展开式αⁿ−bⁿ=(α−b)(αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹) . 其中

αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹≡nαⁿ⁻¹≢0(mod p)

故υₚ(αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹)=0,即证 .

引理2 . p为素数,α,b∈ℤ,满足p∣α−b,(p,αb)=1 . 若p≥3 或p=2且4∣α−b,则有

υₚ(αᵖ−bᵖ)=υₚ(α−b)+1

证明: 若p≥3,有展开式αᵖ−bᵖ=(α−b)(αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹).

由于α≡b(mod p),设b=α+pl,则

αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹≡pαᵖ⁻¹+plαᵖ⁻²(1+2+⋯+p−1)≡pαᵖ⁻¹+p²lαᵖ⁻² p−1

───

2

≢0(mod p²)

于是p ‖ αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹,即υₚ(αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹)=1,即证 .

而当p=2且4∣α−b,则2∣l,同样有α+b≡2α+2l≢0(mod 4) .

LTE引理的证明: 设n=pᵏm,(p,m)=1,则υₚ(n)=k .

( 1 ) 若p≥3,则

υₚ(αⁿ−bⁿ)=υₚ(αᵖᵏᵐ−bᵖᵏᵐ)

=υₚ(αᵖᵏ−bᵖᵏ)

=υₚ(α−b)+k

=υₚ(α−b)+υₚ(n)

( 2 ) 若p=2,则α,b均为奇数,α²≡b²(mod 4),故当2∣n时,

υ₂(αⁿ−bⁿ)=υ₂(α²−b²)+k−1=υ₂(α²−b²)+υ₂

(n)

(2)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

银月梦魇之门 连载中
银月梦魇之门
喜果糖
祁月进入南笙的梦境,发现了他的欲望。南笙心软了,决定毁灭自己和梦境,放她回家。
0.3万字9个月前
三生三世莲心劫 连载中
三生三世莲心劫
彡果果彡
(原创作品)她是九朵莲瓣修炼成仙的,而他是佛门中最有天赋的弟子。
16.4万字8个月前
墨少,请你滚远点 连载中
墨少,请你滚远点
鹿鸣、
血泊之中,红衣女子坐在地上,四周围着人,怀里抱着一个早已没了声息的男子,那是用血染成的红衣啊……他们能否摆脱命运的掌控和天道的轮回,重新在一......
20.8万字8个月前
双世倾于卿 连载中
双世倾于卿
该用户已注销
从前我为了仇恨而活,现在我只为了你而活。两个世界,从前是家人,现在只要你也只会是你。我会留住你,哪怕是鬼神也带不走你。世界被恶鬼腐蚀,我会就......
16.7万字8个月前
你是救赎我的微光 连载中
你是救赎我的微光
常青枝丫
【美艳女王✘高冷国师】曾经以为林深时见鹿,海蓝时见鲸,梦醒时可见你。后来才发现,林深时雾起,不知归处;海蓝时浪涌,望而却步;梦醒时夜续,惊慌......
18.1万字8个月前
努力追妻 连载中
努力追妻
嫣然半夏
我愿以我一人护你千年——令狐墨染无论你在哪,我都会找到你!——沈秋冉
4.7万字8个月前