数学联邦政治世界观
超小超大

Lifting the exponent:LTE引理 (2-1)

记号 . υₚ(α)为α的标准分解式中素数p的次数;δₚ(α)为满足αᵏ≡1(mod p)的最小正整数k;φ(n)为Euler函数.

LTE引理 . p为素数,α,b∈ℤ,n≥1,满足p∣α−b,(p,αb)=1 .

( 1 ) 若p≥3,则

υₚ(αⁿ−bⁿ)=υₚ(α−b)+υₚ(n)

( 2 ) 若p=2,则

υ₂(αⁿ−bⁿ)

n

={υ₂(α²−b²)+υₚ(─)2∣n

2

{υ₂(α−b) 2 ∤ n

推论 .p为奇素数,α,b∈ℤ,n 为正奇数,满足p∣α+b,(p,αb)=1 . 则

υₚ(αⁿ+bⁿ)=υₚ(α+b)+υₚ(n)

引理1 . p为素数,α,b∈ℤ,n≥1,满足p∣α−b,(p,αb)=1,且(n,p)=1,则有

υₚ(αⁿ−bⁿ)=υₚ(α−b)

证明: 有展开式αⁿ−bⁿ=(α−b)(αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹) . 其中

αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹≡nαⁿ⁻¹≢0(mod p)

故υₚ(αⁿ⁻¹+αⁿ⁻²b+⋯bⁿ⁻¹)=0,即证 .

引理2 . p为素数,α,b∈ℤ,满足p∣α−b,(p,αb)=1 . 若p≥3 或p=2且4∣α−b,则有

υₚ(αᵖ−bᵖ)=υₚ(α−b)+1

证明: 若p≥3,有展开式αᵖ−bᵖ=(α−b)(αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹).

由于α≡b(mod p),设b=α+pl,则

αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹≡pαᵖ⁻¹+plαᵖ⁻²(1+2+⋯+p−1)≡pαᵖ⁻¹+p²lαᵖ⁻² p−1

───

2

≢0(mod p²)

于是p ‖ αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹,即υₚ(αᵖ⁻¹+αᵖ⁻²b+⋯bᵖ⁻¹)=1,即证 .

而当p=2且4∣α−b,则2∣l,同样有α+b≡2α+2l≢0(mod 4) .

LTE引理的证明: 设n=pᵏm,(p,m)=1,则υₚ(n)=k .

( 1 ) 若p≥3,则

υₚ(αⁿ−bⁿ)=υₚ(αᵖᵏᵐ−bᵖᵏᵐ)

=υₚ(αᵖᵏ−bᵖᵏ)

=υₚ(α−b)+k

=υₚ(α−b)+υₚ(n)

( 2 ) 若p=2,则α,b均为奇数,α²≡b²(mod 4),故当2∣n时,

υ₂(αⁿ−bⁿ)=υ₂(α²−b²)+k−1=υ₂(α²−b²)+υ₂

(n)

(2)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

安全逃生 连载中
安全逃生
胆小鬼j
    (序)  我转身看向那条长长的走廊,空洞洞的,像是一口吃人的棺材,我听见有人在身后喊我,叫我不要进去,我再也没有力气张口说出一句话。
2.8万字4周前
莫名虚无 连载中
莫名虚无
托坦
我从来都是一个人,我没有任何一个真心朋友,我不知道自己为何活着…我太清楚自己到底需要什么,我执迷不悟…我眼中的自己是多么不堪,我想知道我到底......
0.2万字4周前
寒绒药香 连载中
寒绒药香
苍陨Flimce
福瑞药剂师的日常
0.9万字4周前
黑暗奴隶拍卖会 连载中
黑暗奴隶拍卖会
尨2522
暂无
0.2万字4周前
拜托了,巨龙先生 连载中
拜托了,巨龙先生
许歉离
这回,骑士不会拯救公主,而是公主拯救国家。这回,巨龙不会杀害公主,而是爱上了她。他们之间究竟会发生什么样的故事呢?
0.2万字4周前
世界杯:你好人气歌星 连载中
世界杯:你好人气歌星
彼柚
男主目前未定野性的歌手vs足球天才们
2.7万字4周前