数学联邦政治世界观
超小超大

Zsigmondy定理:从分圆多项式开始 (6-2)

xᵈ−1

证明: xᵈ−1=∏ᵈₖ₌₁d(x−εᵏn

d)

,(kn

d,n)≠1,所以Φₙ(x)和xᵈ−1无公共根,则由引理1知

(Φₙ(x),xᵈ−1)=1

又因为Φₙ(x)∣xⁿ−1=xⁿ−1

───(xᵈ−1),

xᵈ−1

所以Φₙ(x)∣xⁿ−1

───

xᵈ−1

性质4 . α>1,n>2,素数p∣(n,Φₙ(α)),则p是n的最大素因子,且p²∤Φₙ(α)

证明: 设n=pᵏm,(p,m)=1 . 由p∣Φₙ(α)可得p∣αⁿ−1,于是(p,α)=1 .

( 1 ) 若p=2,n=2ᵏm,若m>1,由LTE引理有υ₂(αⁿ−1)=υ₂(α²ᵏ−1) . 2ᵏ是n的真因子,故由性质1 . 3,2∤Φₙ(α),矛盾!

故m=1,n=2ᵏ,2是n的最大素因子 .

由n>2知k>1,所以2ᵏ⁻¹是n的真因子,由LTE引理有υ₂(αⁿ−1)=υ₂(α²ᵏ⁻¹)+1,由性质3,2²∤Φₙ(α) .

( 2 ) 若p为奇素数,由Fermat小定理知αᵐ≡(αᵐ)ᵖᵏ≡1(mod p),于是δ=δₚ(α)∣m .

若δ<m,则δ是m的真因子,pᵏδ是n的真因子,由LTE引理有υₚ(αⁿ−1)=υₚ(αᵖᵏδ−1),由性质3得p∤Φₙ(α),矛盾!

故δ=m,又由Fermat小定理知δ∣p−1,于是δ≤p−1<p,p是n的最大素因子 .

再由LTE引理,υₚ(αⁿ−1)=υₚ(αᵐᵖᵏ⁻¹ −1)+1,故p²∤Φₙ(α)

推论 . α>1,n>2,p为n的素因子,n=pᵏm,(p,m)=1,若素数p∣Φₙ(α),则α模p的阶δₚ(α)=m .

性质5 . p为素数,则

{Φₙ(xᵖ) p∣n

Φₙₚ(x)={Φₙ(xᵖ)

────

{Φₙ(x) p∤n

证明: 记ωₘ为m次单位根 .

( 1 ) 若p∣n,由φ(pn)=pφ(n),(k,pn)=1⟺(k,n)=1

Φₙₚ(x)=∏ (x−ωᵏₙₚ)

1≤k≤ₙₚ(k,ₙₚ)=1

=∏ (x−ωᵏₙₚ)(x − ωₙₚᵏ⁺ⁿ)· · ·(x−ωₙₚᵏ⁺⁽ᵖ⁻¹⁾ⁿ)

1≤k≤p(k,n)=1

=∏ (x−ωᵏₙₚ)(x−ωᵏₙₚωₚ)· · ·(x−ωᵏₙₚωₚᵖ⁻¹)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

身处地狱的你,胜过天堂 连载中
身处地狱的你,胜过天堂
萱酱大大
当一个充满负面情绪的天使遇到一个充满正面情绪的恶魔,她们之间会发生什么呢?(提一下,这个作品出现的所有画面都将会是我画的,我会尝试着把线稿给......
0.5万字9个月前
寒风刺骨(妈了个巴子的不会起名) 连载中
寒风刺骨(妈了个巴子的不会起名)
一只走地蛾
[异能/暂无cp/世界和平/应该算大世界观?]会有多国家人物出场;会对国家带有恶意,但不会对人物带有恶意;请不要在我的评论里面发出任何一个对......
0.4万字9个月前
系统携我闯末世 连载中
系统携我闯末世
飞鸽鸽
资源的破坏,导致了生态环境的恶化,末世的到来引发了部分异能者的觉醒,苏同却被毒舌系统给选择了,自此杀丧尸,收队员,天下我有。
4.6万字8个月前
一妃冲天,帝尊偏要宠 连载中
一妃冲天,帝尊偏要宠
李朵儿
(已签约/已完结)她是将军府的二小姐,他是炼狱帝尊,他被自己的母亲设计中了*药,而她却做了解药的人。两人注定要纠缠不清,且看邪魅帝尊如何攻破......
12.7万字8个月前
唐舞麟的神界生活(上) 连载中
唐舞麟的神界生活(上)
我是菲菲😊
唐舞麟在神界的快乐、搞笑生活。
0.3万字8个月前
银河封神纪(另篇) 连载中
银河封神纪(另篇)
飞哥与神之进
作者简介……懒
0.1万字8个月前