数学联邦政治世界观
超小超大

Zsigmondy定理:从分圆多项式开始 (6-2)

xᵈ−1

证明: xᵈ−1=∏ᵈₖ₌₁d(x−εᵏn

d)

,(kn

d,n)≠1,所以Φₙ(x)和xᵈ−1无公共根,则由引理1知

(Φₙ(x),xᵈ−1)=1

又因为Φₙ(x)∣xⁿ−1=xⁿ−1

───(xᵈ−1),

xᵈ−1

所以Φₙ(x)∣xⁿ−1

───

xᵈ−1

性质4 . α>1,n>2,素数p∣(n,Φₙ(α)),则p是n的最大素因子,且p²∤Φₙ(α)

证明: 设n=pᵏm,(p,m)=1 . 由p∣Φₙ(α)可得p∣αⁿ−1,于是(p,α)=1 .

( 1 ) 若p=2,n=2ᵏm,若m>1,由LTE引理有υ₂(αⁿ−1)=υ₂(α²ᵏ−1) . 2ᵏ是n的真因子,故由性质1 . 3,2∤Φₙ(α),矛盾!

故m=1,n=2ᵏ,2是n的最大素因子 .

由n>2知k>1,所以2ᵏ⁻¹是n的真因子,由LTE引理有υ₂(αⁿ−1)=υ₂(α²ᵏ⁻¹)+1,由性质3,2²∤Φₙ(α) .

( 2 ) 若p为奇素数,由Fermat小定理知αᵐ≡(αᵐ)ᵖᵏ≡1(mod p),于是δ=δₚ(α)∣m .

若δ<m,则δ是m的真因子,pᵏδ是n的真因子,由LTE引理有υₚ(αⁿ−1)=υₚ(αᵖᵏδ−1),由性质3得p∤Φₙ(α),矛盾!

故δ=m,又由Fermat小定理知δ∣p−1,于是δ≤p−1<p,p是n的最大素因子 .

再由LTE引理,υₚ(αⁿ−1)=υₚ(αᵐᵖᵏ⁻¹ −1)+1,故p²∤Φₙ(α)

推论 . α>1,n>2,p为n的素因子,n=pᵏm,(p,m)=1,若素数p∣Φₙ(α),则α模p的阶δₚ(α)=m .

性质5 . p为素数,则

{Φₙ(xᵖ) p∣n

Φₙₚ(x)={Φₙ(xᵖ)

────

{Φₙ(x) p∤n

证明: 记ωₘ为m次单位根 .

( 1 ) 若p∣n,由φ(pn)=pφ(n),(k,pn)=1⟺(k,n)=1

Φₙₚ(x)=∏ (x−ωᵏₙₚ)

1≤k≤ₙₚ(k,ₙₚ)=1

=∏ (x−ωᵏₙₚ)(x − ωₙₚᵏ⁺ⁿ)· · ·(x−ωₙₚᵏ⁺⁽ᵖ⁻¹⁾ⁿ)

1≤k≤p(k,n)=1

=∏ (x−ωᵏₙₚ)(x−ωᵏₙₚωₚ)· · ·(x−ωᵏₙₚωₚᵖ⁻¹)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

清零世界 连载中
清零世界
苡绛
异变来的猝不及防,世界之外到底是什么,是和谐的日升日落,还是难以言说的地狱,这一点,无人知晓。十年前,人们日出而作日落而息,十年后,却只能躲......
5.4万字4周前
洞察微表情 连载中
洞察微表情
小小流星大大梦想
探索微表情科学原理,掌握解读技巧。微表情蕴含丰富信息,带你开启奇妙的内心世界洞察之旅。本书较为枯燥乏味,直接出示结果,并无讲解。
0.5万字4周前
植物:来自万界的融合(加娘化) 连载中
植物:来自万界的融合(加娘化)
千封之乐
僵尸入侵,植物大战一个未知的世界,一个新的旅程。来自植物大战僵尸的僵尸全体入侵,杂交版,95版,融合版,嫁接版,原版,所有僵尸集体入侵。且看......
7.5万字4周前
彼岸花杀 连载中
彼岸花杀
韬家夏陌
一位女杀手,因为救一朝好心,救了一个老婆婆,得到了血泪,引来杀身之祸。死后与自己留在玄武大陆的灵魂合二为一……(作者我是一个追星女孩,偶尔会......
15.7万字4周前
失忆的狠毒公主 连载中
失忆的狠毒公主
禾曦牧
【本作品在2020.3.21时签约】[严禁转载!已完结]<神妄文社>你逆光而来,配得上所有的好“这是哪?”落水的公主醒来就不记得......
10.4万字4周前
绑定生子系统后妖王她躺平了 连载中
绑定生子系统后妖王她躺平了
拉面不辣
(男生子+1v?)刚入编制,前途一片光明的花虔在面试时突发心脏病猝死,穿到人与妖共存的世界中成为妖王,从小身子瘦不拉几的不说,走几步咳几声,......
0.1万字4周前