引理3.1 设 X 为赋范空间,Y 是 X⋆ 的子空间,定义 ⊥Y:={x∈X:f(x)=0,∀f∈Y} .
如果 L 是 X 的子空间,那么 ⊥(L⊥)=ˉL .
证明:显然有 ˉL⊂⊥(L⊥),我们只要证明 ⊥(L⊥)⊂ ˉL 即可.假若不然,存在 x₀∈⊥(L⊥) ,使得 x₀ ∉ ˉL .由于 ˉL 是赋范空间 X 的闭子空间,所以存在线性泛函 f∈X⋆ ,使得 f(y)=0,∀y∈ˉL ,且 f(x₀)=dist(x₀,ˉL)>0. 这与 x₀∈⊥(L⊥) 矛盾.
定理3.2的证明:如果 A≠C(X) ,那么考虑 A~=A+ℂ ,它是 C(X) 的闭自伴子代数、含幺且分离 X ,因此根据定理3.1,有 A~=C(X) .所以 dimC(X)/A=1 ,故 dimA⊥=1. 取 μ∈A⊥ ,且 ‖μ‖=1 ,于是对于f∈A , fμ∈A⊥ ,而 A⊥ 是一维的,所以存在 α∈C ,使得 fμ=αμ .据此可知,f(x)=α ,对 μ支撑集中的 x成立.又由于 A 分离 X ,所以只能有 μ 的支撑集为单点集 {x₀} .所以 A⊥=ℂδₓ₀ .又因为 A 是闭的,所以
A=⊥(A⊥)={f∈C(X):f(x₀)=0}.
定理3.3 如果 X 是局部紧的,A 是 C₀(X) 的闭自伴子代数,且 A 分离 X ,如果对每个 x∈X ,存在 f∈C₀(X) ,使得 f(x)≠0 ,那么 A=C₀(X) .
证明:设 X∞ 为 X 的单点紧化,则 C₀(X)={f∈C(X∞):f(∞)=0}
. A 作为 C(X∞) 的闭自伴真子代数,且 A 分离 X ,根据定理3.2,存在 x₀∈X∞ ,使得 A={f∈C(X∞):f(x₀)=0}.
但是对于 x∈X ,都存在 f∈A ,使得 f(x)≠0 .因此只能有 A={f∈C(X∞):f(∞)=0}=C₀(X).
参考
1.John B. Conway,A First Course in Functional Analysis,Springer,2007.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。