数学联邦政治世界观
超小超大

Stone-Weierstrass定理 (5-4)

μ(f)=∫ₓfdμ=∫ᴋfdμ

取 x₀∈K ,我们断言 K={x₀} .为此,我们假设有另一点 y₀∈K,y₀≠x₀ .由假设,存在 g∈A ,使得 g(x₀)≠g(y₀),令

|g−g(y₀)|²

f= ───────────.

|g−g(y₀)|²+1

则 f 也分离 x₀,y₀ ,并且有 f∈A,0≤f<1 .由于 μ∈A⊥ ,所以对任意的 g∈A ,

∫ᴋfgdμ=∫ᴋ(1−f)gdμ=0.

这意味着 fμ,(1−f)μ∈A⊥ .并且有

‖fμ‖=∫ᴋfd|μ|>0,‖(1−f)μ

‖=∫ᴋ(1−f)d|μ|>0,

其原因为f 是连续的.于是记 α=‖fμ‖ ,那么 ‖(1−f)μ‖=‖μ‖−α=1−α 且 0<α<1 .所以

μ=fμ+(1−f)μ=α──

‖fμ‖

(1−f)μ

+(1−α)────.

‖(1−f)μ‖

由于 μ 为 A⊥ 的端点,所以 fμ‖fμ‖=μ ,即 (f−α)μ=0 ,这意味着 f=α,α.e.−|μ| .又因为 f 连续,所以 f(x)=α,∀x∈K (根据 K 的定义可以验证),这与 f 分离 x₀,y₀ 矛盾.所以 K={x₀} .

所以有 μ=rδₓ₀ ,但是 1∈A,μ∈A⊥ ,所以 0=∫ₓ1dμ=r ,所以 μ=0 .这与 ‖μ‖=1 矛盾.所以有 A⊥={0},即A=C(X).证毕.

为了得到局部紧空间版本的Stone-Weierstrass定理,我们引入如下记号

C₀(X)={f∈C(X):∀ε>0∃紧集K⊂X[x∈X\K ⇒ |f(x)|<ε},

其中 X 是局部紧的Hausdorff空间, C₀(X) 在 sup 范数下为Banach空间.这实际上意味着对于 X 的单点紧致化 X∞ ,

f∈C₀(X)⇔[f∈C(X∞)∧f(∞)=0].

这引导我们去证明如下结论:

定理3.2 设 X 是紧Hausdorff空间, A 是 C(X) 的闭自伴子代数(未必含幺),且A分离 X ,那么或者 A=C(X) ,或者存在 x₀ ,使得

A={f∈C(X):f(x₀)=0}.

为证明这一命题,我们先证明一个引理

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

学渣穿越各朝代历史 连载中
学渣穿越各朝代历史
嬴九盛
主要是一个啥都不会的学渣穿越历史~
0.8万字1年前
女配修仙道且长 连载中
女配修仙道且长
雁山辞
平平无奇打工人慕溪,意外穿越到修仙小说世界,成为了其中的恶毒女配,是干翻女主、趁机逆袭?还是勾搭女主,抱紧大腿?亦或是我自走我仙路,自成一片......
5.5万字1年前
天域第一神 连载中
天域第一神
千珑樰
林清自幼受尽人间疾苦,一颗坚韧之心不肯屈服。奈何命运无常。天道破损。修天道。战北渊。手握太星之力,杀遍天下负罪之人。守护红颜知己。力争一线生......
19.2万字1年前
神兵小将之神剑 连载中
神兵小将之神剑
落颜冰露
2.8万字1年前
血咒邪妃 连载中
血咒邪妃
沫九殇
她本是一代邪教主,穿越成为神族的储君公主。一个血夜的觉醒,她背负了最沉重的命运,但依旧唯我独尊,依旧睥睨天下。翻手为云,覆手为雨,欲与天公试......
3.3万字1年前
lossofmemory 连载中
lossofmemory
黎踪
没什么好说的
0.8万字1年前