─
‖f‖,f∈X
则 ψ~∈(X⋆)₁ (因为 ψ∈P )且 Λ(ψ~)=ψ ,即 ψ∈Λ((X⋆)₁) ,所以 Λ((X⋆)₁) 闭.证完.
3.Stone-Weierstrass定理
设 X 为紧Hausdorff空间,其上的连续复值函数代数为 C(X) .我们说它的子代数 A分离 X ,如果对任意的 x,y∈X,x≠y ,存在 f∈A ,使得 f(x)≠f(y) .称它是自伴的,如果 f∈A ,则 f¯∈A .
对于闭区间 [α,b] ,其上的连续函数空间C[a,b] 的对偶空间等同于 BV[α,b] .而对于一般紧Hausdorff空间,我们无从谈论其上的有界变差函数,但是我们有著名的Riesz-Markov表现定理,它说明 C(X)⋆ 可以被视作 X 上的复正则Borel测度构成的空间 M(X) ,也就是说每个有界线性泛函 μ:C(X)→C ,都对应着一个正则Borel测度 μ,使得
μ(f)=∫ₓfdμ.
当 h 是一个有界Borel函数时,hμ 诱导了一个 X 上的测度,即
hμ(A)=∫ₓχᴀhdμ,
自然地,hμ 作为 C(X)⋆ 中的元素,它对应为映射
hμ(f)=∫ₓfhdμ.
且有 ‖hμ‖=∫ₓ|h|d|μ| ,其中 |μ| 为 μ 的全变差测度.
下面,我们引出本文最重要的定理:
定理3.1 (Stone-Weierstrass定理)X是紧Hausdorff空间,如果 A 是 C(X) 的包含常函数 1 的闭自伴子代数,且 A 分离 X ,则 A=C(X) .
证明: C(X) 作为赋范空间自然是局部凸的,所以之前的两个定理都可以使用.
为了证明这个结果,我们只需证明 A⊥:={ν∈C(X)⋆:ν(f)=0,∀f∈A}={0} 即可.如若不然,则由Banach-Alaoglu定理,闭单位球 {ν∈A⊥:‖ν‖≤1} 是 ω* -紧的.再有Krein-Milman定理,存在它的一个端点 μ .
根据Riesz-Markov表现定理,存在与之对应的一个正则Borel测度,仍记为 μ ,满足 ‖μ‖=|μ|(X)=1. 记复测度 μ 的支撑集为 K ,即
K:={x∈X:∀Nₓ(|μ|(Nₓ)>0)}.
其中, Nₓ 是 x 的开邻域. K 非空,如若不然,对每个 x∈X ,选择 Nₓ ,使得 |μ|(Nₓ)=0,而 X=⋃x∈X Nₓ 且 X 紧,所以存在 x₁,⋯,xₙ,使得 X=⋃ⁿᵢ₌₁ Nₓᵢ ,于是 |μ|(X)≤∑ⁿᵢ₌₁|μ|(Nₓᵢ)=0 ,这与 |μ|(X)=1 矛盾.事实上, |μ|(X\K)=0. 这由内正则性和与上述过程一样应用紧性即可证明.据此,有
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。