数学联邦政治世界观
超小超大

Hahn-Banach定理 (5-4)

|g(x)|≤p(x),x∈X.

证明. 若 X 为实线性空间, 由于半范数是次线性泛函, 因此根据实线性空间的Hahn-Banach定理, 存在 g∈X*,g|Z=f 使得

g(x)≤p(x),x∈X.

根据半范数的性质(3)可知

−g(x)=g(−x)≤p(−x)=p(x),

因此 |g(x)|≤p(x).

若$X$为复线性空间, 则根据上一引理有

f(x)=Ref(x)−iRef(ix).

于是

Ref(x)≤|f(x)|≤p(x),x∈Z.

由上一引理我们知道 f∈Zℝ*, 因此存在 g₁∈Xℝ* 满足 g₁|z=Ref 使得

g₁(x)≤p(x),x∈X.

令 g(x)=g₁(x)−ig1(ix),那么 g∈X* 并且容易验证 g|z=f. 此外, 对于任意 x∈X,存在 θ∈[0,2π) 使得 g(x)=|g(x)|eⁱθ, 于是

|g(x)|=g(x)e−ⁱθ=g(e−ⁱθx)=g₁(e−ⁱθx)≤p(e−ⁱθx)=p(x).

这就完成了定理的证明.

定理5(Hahn-Banach定理, 赋范空间). 设 X 为赋范空间, Z 为 X 的线性子空间, f∈Z′ . 则存在 g∈X′,g|z=f,且 ‖g‖=‖f‖.

证明. 容易验证 x↦‖f‖‖x‖ 满足半范数的条件, 因此根据上一定理, 存在 g∈X* 使得 g|z=f 并且

|g(x)|≤‖f‖‖x‖,x∈X.

于是 g∈X′ 并且 ‖g‖≤‖f‖. 另一方面, 存在 xₙ∈Z 满足 ‖xₙ‖=1 使得

limₙ→∞|gxₙ|=limₙ→∞|fxₙ|=‖f‖,

因此 ‖g‖≥‖f‖. 这就证明了 ‖g‖=‖f‖.

定理6(Hahn-Banach). 设 X 为赋范空间, x₀∈X,x₀≠0. 则存在 f∈X′ 满足 ‖f‖=1 使得 f(x₀)=‖x₀‖.

证明.令 Z=Span{x₀} 并定义函数 g:Z → ℝ 为

λx₀↦‖λx₀‖,λ∈K,

则 g 显然为 X 的线性子空间 Z 上的有界线性泛函并且 ‖g‖=1, 此外 g(x₀)=‖x₀‖. 于是, 根据上一定理, 存在 f∈X′ 满足 ‖f‖=1 使得 f(x₀)=‖x₀‖ .

定理6说明若 X 为非零赋范空间, 则 X′≠{0}. 进一步地, 任取 x,y∈X,x≠y,则 x−y≠0,由定理6, 存在 f∈X′,‖f‖=1,且 f(x−y)=‖x−y‖≠0, 因此 f(x)≠f(y). 即 X′ 中的元素可以分离 X 中的元素. 换句话说,若 x₀∈X,则 x₀=0 当且仅当任取 f∈X′, 有 f(x₀)=0. 这一判据经常用来验证赋范空间中某个元素为零元素.

推论7. 设 X 为非零赋范空间,x₀∈X. 则

‖x₀‖=maxf∈X′,f≠0|f(x₀)|

───

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

极狱——重生之光 连载中
极狱——重生之光
桉姸
剧情跟随故事发展而来
0.7万字9个月前
三生三世之情深缘浅(续) 连载中
三生三世之情深缘浅(续)
佛铃花语
此书为之前三生三世之情深缘浅的续写。
20.6万字9个月前
浩桐传 连载中
浩桐传
小暗斗狼
“雨浩。从现在开始,我就是你的妻子了。无论你的伤能不能好起来,我永远都是你的妻子。那个契约,我很喜欢呢。你活着,我会照顾你一辈子。如果你死了......
2.4万字9个月前
航天学院喜会长 连载中
航天学院喜会长
喜初黎
0.4万字9个月前
洪荒之天道妹妹 连载中
洪荒之天道妹妹
语羽荔
当天道有了妹妹,他还会像原来一样无情吗?当鸿钧有了爱人,他还会冷漠无情吗?当三清有了妹妹,他们还会反目成仇吗?当洪荒多了一个她,会发生怎样的......
1.8万字9个月前
走过奈何桥去地狱 连载中
走过奈何桥去地狱
白画眉
奈何桥就像一条黑蟒,在白色阴泠的雾里,时隐时现,十分的诡异。孟婆说:“你们必须分开,还要喝下这碗忘忧汤。”秦雨和方佳佳互相凝视,牵手跳下奈何......
11.1万字9个月前