数学联邦政治世界观
超小超大

Hahn-Banach定理 (5-4)

|g(x)|≤p(x),x∈X.

证明. 若 X 为实线性空间, 由于半范数是次线性泛函, 因此根据实线性空间的Hahn-Banach定理, 存在 g∈X*,g|Z=f 使得

g(x)≤p(x),x∈X.

根据半范数的性质(3)可知

−g(x)=g(−x)≤p(−x)=p(x),

因此 |g(x)|≤p(x).

若$X$为复线性空间, 则根据上一引理有

f(x)=Ref(x)−iRef(ix).

于是

Ref(x)≤|f(x)|≤p(x),x∈Z.

由上一引理我们知道 f∈Zℝ*, 因此存在 g₁∈Xℝ* 满足 g₁|z=Ref 使得

g₁(x)≤p(x),x∈X.

令 g(x)=g₁(x)−ig1(ix),那么 g∈X* 并且容易验证 g|z=f. 此外, 对于任意 x∈X,存在 θ∈[0,2π) 使得 g(x)=|g(x)|eⁱθ, 于是

|g(x)|=g(x)e−ⁱθ=g(e−ⁱθx)=g₁(e−ⁱθx)≤p(e−ⁱθx)=p(x).

这就完成了定理的证明.

定理5(Hahn-Banach定理, 赋范空间). 设 X 为赋范空间, Z 为 X 的线性子空间, f∈Z′ . 则存在 g∈X′,g|z=f,且 ‖g‖=‖f‖.

证明. 容易验证 x↦‖f‖‖x‖ 满足半范数的条件, 因此根据上一定理, 存在 g∈X* 使得 g|z=f 并且

|g(x)|≤‖f‖‖x‖,x∈X.

于是 g∈X′ 并且 ‖g‖≤‖f‖. 另一方面, 存在 xₙ∈Z 满足 ‖xₙ‖=1 使得

limₙ→∞|gxₙ|=limₙ→∞|fxₙ|=‖f‖,

因此 ‖g‖≥‖f‖. 这就证明了 ‖g‖=‖f‖.

定理6(Hahn-Banach). 设 X 为赋范空间, x₀∈X,x₀≠0. 则存在 f∈X′ 满足 ‖f‖=1 使得 f(x₀)=‖x₀‖.

证明.令 Z=Span{x₀} 并定义函数 g:Z → ℝ 为

λx₀↦‖λx₀‖,λ∈K,

则 g 显然为 X 的线性子空间 Z 上的有界线性泛函并且 ‖g‖=1, 此外 g(x₀)=‖x₀‖. 于是, 根据上一定理, 存在 f∈X′ 满足 ‖f‖=1 使得 f(x₀)=‖x₀‖ .

定理6说明若 X 为非零赋范空间, 则 X′≠{0}. 进一步地, 任取 x,y∈X,x≠y,则 x−y≠0,由定理6, 存在 f∈X′,‖f‖=1,且 f(x−y)=‖x−y‖≠0, 因此 f(x)≠f(y). 即 X′ 中的元素可以分离 X 中的元素. 换句话说,若 x₀∈X,则 x₀=0 当且仅当任取 f∈X′, 有 f(x₀)=0. 这一判据经常用来验证赋范空间中某个元素为零元素.

推论7. 设 X 为非零赋范空间,x₀∈X. 则

‖x₀‖=maxf∈X′,f≠0|f(x₀)|

───

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

深情入你心 连载中
深情入你心
青青子衿?%
李栀以为姜家家,就老公一个儿子,没有姑子,姐姐那些麻烦事,也没有公公婆婆偏心,大伯哥,小叔子的事,没想到,没有这些,却有别的,且看她怼天,怼......
14.6万字4周前
Ukiyo 连载中
Ukiyo
Thirsty.
双男主,非传统末世文,双强Liveandletlive活着就是与万物共存
0.1万字4周前
ABO:钓系美人的攻略法则 连载中
ABO:钓系美人的攻略法则
圈圈点点ovo
[abo+1v1+美人O+强强联手+身心双洁+恃美行凶]沈云霁x孟栖棠意气风发嚣张Ax撩天撩地海王O-作为帝国学院最受欢迎Alpha榜的排名......
8.4万字4周前
狐狸他一心只想舔颜 连载中
狐狸他一心只想舔颜
兔砸是我的
[1V1无女主双男主](本书又名《狐狸他一心只想舔颜》《宿主又被系统坑了怎么办》《宿主一心想反攻的第N天》)身为快穿管理员黎微阳终于可以成为......
3.9万字4周前
十二星,落梦无情 连载中
十二星,落梦无情
羊崽子1
『本书于2022年11月28日正试签约』世界之初,六界共存…唯星界最为强盛。情语圣星为统领星界的王,其具有控制情感的力量和改变命运红线的书。......
27.3万字4周前
熠是…… 连载中
熠是……
梦零莹
这人很懒,啥都没写。
0.3万字4周前