数学联邦政治世界观
超小超大

Martin Axiom马丁公理的推论 (2-1)

定义 MA(κ) :对于任意满足可数反链条件的非空偏序集 P 上的任意基数 ≤κ 的稠密子集族 𝕯 ,都存在泛型滤子(generic filter) G 满足 ∀Dα∈𝕯(Dα∩G≠∅) ,其中 κ<c 。马丁公理: MA↔∀κ<c(MA(κ)) 。显然 CH→MA ,因此此时不存在 ω<κ<c 。

马丁公理乍一看很难理解,但我们可以把它看作是力迫法的一种推广:我们使用力迫法时往往会用以下句子开头“设 M 是 ZFC 的可数传递模型,然后blabla”,由于 M 可数,那么力迫偏序 ℙ∈M 在 M 的稠密子集只有可数个,因此我们可以递归构造泛型滤子 G :令 D₁,D₂,⋯ 是 M 中的稠密子集,从中选取元素满足 p₀≥p₁≥⋯ ,最后令 G={q∈P:∃n(q≥pₙ)} 即可。那如果 P 有不可数个稠密子集呢?此时如何保证泛型滤子存在?马丁公理应运而生。

本文将简要证明马丁公理的两个推论:不存在Suslin树以及 κ<c→2κ=c 。

定理 1 :如果 MA(ω₁) 成立,那么不存在Suslin树。Suslin树是一棵 ω₁ 树,它满足可数反链条件且没有长度为 ω₁ 的树枝。

证明:假设 (T,<) 是Suslin树,定义 T′={t∈T:|{s:s≥t}|≥ω₁} ,不难验证 T′ 为Suslin树且 ∀s∈T′∃t∈T′(t>s) ;定义 < 的逆关系 ≺ 为 t<s↔s≺t ,定义 Dα={s∈T′:∃t∈Tα′(s≺t)} ,不难证明 Dα 是稠密子集;由于 MA(ω₁) ,因此存在泛型滤子 G 满足 G∩Dα≠∅ ,则 ⋃G 就是长度为 ω₁ 的树枝,反证定理成立。 ⊣

下面我们证明 κ<c→2κ=c ,为此,我们需要先引入一些概念引理。

称 ℑ⊆[ω]ω 为几乎不交族,当且仅当 ∀x,y∈ℑ(|x∩y|<ω) 。

引理 1 :若 ℑ 是极大几乎不交族,那么 ℑ 的基数不可数。

证明:反证法,假设 ℑ={Xᵢ}ᵢ<ω ,由于 Xᵢ∩Xⱼ 是有限集,因此 Xₙ₊₁ − ⋃ᵢ≤ₙ Xᵢ 是无限集。令 Y₁=min(X₁−X₀) 和 Yₙ₊₁=min(Xₙ₊₁− ⋃ᵢ≤ₙ Xᵢ) ,定义 Y=⋃ₙYₙ ,这样 Y≠Xₙ 且 Y∩Xₙ 是有限集,这与 ℑ 极大矛盾,反证引理成立。 ⊣

定义 Fₙ={Xᵢ}ᵢ≤ₙ ,注意到在上述证明过程中 ⟨Yₙ,Fₙ⟩ 满足如下特点:若 n<m ,那么 ∀A∈Fₙ(A∩Yₘ=Aₙ) ,换言之, Yₘ 并没有增加 Fₙ 中的自然数集子集的元素,这诱导我们给出一个偏序结构:令 ℑ 是无穷几乎不交族,定义 Pℑ={(s,F):s∈[ω]<ω∧F∈[ℑ]<ω} ,定义 Pℑ 是偏序结构为:

(s,F)≤(t,G)↔s⊇t∧F⊇G∧(⋃G∩s⊆t)

不难看出 (s,F),(t,G) 相容当且仅当 (⋃F∩t⊆s)∧(⋃G∩s⊆t) ,显然,这意味着 (s,F∪{x})≤(s,F) ;也不难看出 Pℑ 满足可数反链条件:假设 Q⊆Pℑ 是不可数集合,因此存在 s 、存在 F₀,F₁ 满足 (s,F₀),(s,F₁)∈Q ,那么 (s,F₀∪F₁)≤(s,Fᵢ),i∈2 。

引理 2 :令 x∈ℑ 和 Dₓ={(s,F)∈Pℑ:x∈F} ,那么 Dₓ 是 Pℑ 的稠密子集。

证明:任选 (t,G) ,那么 (t,G∪{x})∈Dx 。 ⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

宗门大师姐,黎星若飞升成仙 连载中
宗门大师姐,黎星若飞升成仙
为旎而来
黎星若从凡人修为仙者,拯救苍生,一步一步得到自己想要的位置
7.7万字8个月前
修仙纪1 连载中
修仙纪1
为你而等待,只为一个答案
这是一个没有神仙,只有修仙者的时代
92.8万字8个月前
MayBE始篇 连载中
MayBE始篇
AizJetem
李艾,一个出生就在宇宙最顶端的女孩,伴随着她的成长,她所面对的事物往往比她所能想象的还要复杂。本篇章主要讲述李艾的爷爷李尔康再次遇见已经死去......
2.0万字8个月前
十二星座之落花无期 连载中
十二星座之落花无期
鸽子糖糖
「天枢阁楼」“风烟通地轴,星象正天枢”「疏愁书院」“疏星淡月秋千院,愁云恨雨芙蓉面”「已签约」十二星宫宫主丧失记忆坠落到一个名为【星源】的魔......
21.2万字8个月前
传说有个都市传说 连载中
传说有个都市传说
竹咕菇
(已签约,请勿抄袭)你有没有觉察出来,我们生活的城市里也许隐藏着各式各样的妖怪?他们背负着都市传说,组成这座城市神秘的一面。我们的故事,就要......
40.5万字8个月前
星际女配貌美如花 连载中
星际女配貌美如花
本虫
已签约努力保持日更21世纪的五好美少女,因为评价了一句和她名字一样的女配星际文,魂穿了!!
4.5万字8个月前