数学联邦政治世界观
超小超大

Martin Axiom马丁公理的推论 (2-1)

定义 MA(κ) :对于任意满足可数反链条件的非空偏序集 P 上的任意基数 ≤κ 的稠密子集族 𝕯 ,都存在泛型滤子(generic filter) G 满足 ∀Dα∈𝕯(Dα∩G≠∅) ,其中 κ<c 。马丁公理: MA↔∀κ<c(MA(κ)) 。显然 CH→MA ,因此此时不存在 ω<κ<c 。

马丁公理乍一看很难理解,但我们可以把它看作是力迫法的一种推广:我们使用力迫法时往往会用以下句子开头“设 M 是 ZFC 的可数传递模型,然后blabla”,由于 M 可数,那么力迫偏序 ℙ∈M 在 M 的稠密子集只有可数个,因此我们可以递归构造泛型滤子 G :令 D₁,D₂,⋯ 是 M 中的稠密子集,从中选取元素满足 p₀≥p₁≥⋯ ,最后令 G={q∈P:∃n(q≥pₙ)} 即可。那如果 P 有不可数个稠密子集呢?此时如何保证泛型滤子存在?马丁公理应运而生。

本文将简要证明马丁公理的两个推论:不存在Suslin树以及 κ<c→2κ=c 。

定理 1 :如果 MA(ω₁) 成立,那么不存在Suslin树。Suslin树是一棵 ω₁ 树,它满足可数反链条件且没有长度为 ω₁ 的树枝。

证明:假设 (T,<) 是Suslin树,定义 T′={t∈T:|{s:s≥t}|≥ω₁} ,不难验证 T′ 为Suslin树且 ∀s∈T′∃t∈T′(t>s) ;定义 < 的逆关系 ≺ 为 t<s↔s≺t ,定义 Dα={s∈T′:∃t∈Tα′(s≺t)} ,不难证明 Dα 是稠密子集;由于 MA(ω₁) ,因此存在泛型滤子 G 满足 G∩Dα≠∅ ,则 ⋃G 就是长度为 ω₁ 的树枝,反证定理成立。 ⊣

下面我们证明 κ<c→2κ=c ,为此,我们需要先引入一些概念引理。

称 ℑ⊆[ω]ω 为几乎不交族,当且仅当 ∀x,y∈ℑ(|x∩y|<ω) 。

引理 1 :若 ℑ 是极大几乎不交族,那么 ℑ 的基数不可数。

证明:反证法,假设 ℑ={Xᵢ}ᵢ<ω ,由于 Xᵢ∩Xⱼ 是有限集,因此 Xₙ₊₁ − ⋃ᵢ≤ₙ Xᵢ 是无限集。令 Y₁=min(X₁−X₀) 和 Yₙ₊₁=min(Xₙ₊₁− ⋃ᵢ≤ₙ Xᵢ) ,定义 Y=⋃ₙYₙ ,这样 Y≠Xₙ 且 Y∩Xₙ 是有限集,这与 ℑ 极大矛盾,反证引理成立。 ⊣

定义 Fₙ={Xᵢ}ᵢ≤ₙ ,注意到在上述证明过程中 ⟨Yₙ,Fₙ⟩ 满足如下特点:若 n<m ,那么 ∀A∈Fₙ(A∩Yₘ=Aₙ) ,换言之, Yₘ 并没有增加 Fₙ 中的自然数集子集的元素,这诱导我们给出一个偏序结构:令 ℑ 是无穷几乎不交族,定义 Pℑ={(s,F):s∈[ω]<ω∧F∈[ℑ]<ω} ,定义 Pℑ 是偏序结构为:

(s,F)≤(t,G)↔s⊇t∧F⊇G∧(⋃G∩s⊆t)

不难看出 (s,F),(t,G) 相容当且仅当 (⋃F∩t⊆s)∧(⋃G∩s⊆t) ,显然,这意味着 (s,F∪{x})≤(s,F) ;也不难看出 Pℑ 满足可数反链条件:假设 Q⊆Pℑ 是不可数集合,因此存在 s 、存在 F₀,F₁ 满足 (s,F₀),(s,F₁)∈Q ,那么 (s,F₀∪F₁)≤(s,Fᵢ),i∈2 。

引理 2 :令 x∈ℑ 和 Dₓ={(s,F)∈Pℑ:x∈F} ,那么 Dₓ 是 Pℑ 的稠密子集。

证明:任选 (t,G) ,那么 (t,G∪{x})∈Dx 。 ⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

系统:我能看到重叠空间 连载中
系统:我能看到重叠空间
寒江雨辰
你相信吗?每个人身上都存在着另一层空间。江宛本为救母亲,被迫与赵家公子达成X交易。而赵家公子却暗地里害死江宛母亲。在江宛即将沦为赵公子的下一......
1.4万字1个月前
暗与明的纠纷 连载中
暗与明的纠纷
黑水鸭和白水鹅
明暗之愁到底谁错谁对
1.6万字4周前
随风到银河 连载中
随风到银河
唯爱星吾你夜妈
末日,谁会是最后的幸存者?甜妹脸御姐音的南宫千疯批美人上官月憨厚老实未莫实力未知时星吾纯爱忠贞白景外冷内热颜柏天真可爱沈晓可靠稳重江淮
0.4万字4周前
当他们被网暴后回奇猫国当了镇长2 连载中
当他们被网暴后回奇猫国当了镇长2
173***038_5050768635
0.3万字4周前
如果那一天真的来临 连载中
如果那一天真的来临
碎叶潜潜
如果天使遇上恶魔,如果猫猫变成了美少年,如果穿越到了动漫里……一万个如果,有没有一个能让你收藏的嘞,话不多说,快上车!!!(๑˙❥˙๑)憋说......
10.2万字4周前
零零散散的文章 连载中
零零散散的文章
雨落微煦
有诗,有文章,基本上是单篇,也有连着的
1.7万字4周前