数学联邦政治世界观
超小超大

潜无穷与实无穷(数学解释)四 (3-3)

既然有限,当然可以阿基里斯可以跑完和乌龟之间的距离差,也就是能够追上乌龟。

“第1个原子距离”+“第2个原子距离”+· · ·+“第n个原子距离”=阿基果斯和乌龟之间的距离

有限次×原子距离≠无穷

• 潜无穷的观点来分析

对阿基里斯和乌龟之间的距离进行切分,可以进行无穷次切分。无穷次切分得到的距离为“无穷小”。

无穷次×无穷小(不一定等于)无穷│

根据现代极限的概念,阿基里斯追乌龟的这个数列求和,是一个收敛的级数。可以很轻松的追上。

• 芝诺悖论是怎么产生的?

同时使用潜无穷+实无穷就特别容易产生悖论

这里使用了潜无穷中无限可分,又用了实无穷的有限次,从而错误的得到了无穷的结果,所以得出了永远追不上的结论。

一个场景里同时使用

潜无穷+实无穷≈悖论

罗素悖论

罗素在1903年提出,通俗的说是:

一个理发师说:“我只给本城所有不给自己刮脸的人刮脸。 ” 问题是:理发师能不能给自己刮脸? 如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸; 如果他给自己刮脸,他就属于“给自己刮脸的人”,他就不能给自己刮脸。

罗素是针对集合论提出的悖论:

一个集合S:S由一切不属于自身的集合所组成。然后罗素问:s是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

双世情殇:火葬场 连载中
双世情殇:火葬场
库洛米米
0.1万字8个月前
风铃心愿 连载中
风铃心愿
是一竹a
是朋友和我共同讨论的设定
0.1万字8个月前
玄大陆,登王座 连载中
玄大陆,登王座
蕊封
男主:竹荆女主:林楪双洁有副CP在玄大陆中,每个人在10岁的时候都会激发灵力,以及契约。契约可以帮他们契约在玄大陆的神兽。竹荆是不幸的,因为......
4.1万字8个月前
凤逐凌云志 连载中
凤逐凌云志
漓筑
三千流水觞觞,却只记得一个回眸,只言片语,一世别离。世有凌云山,司九辰上神之徒竹墨染下山历练,究竟是缘是劫。烛凌风:“我说过救了我,你会后悔......
30.8万字8个月前
捡只狐仙做男友 连载中
捡只狐仙做男友
鹿曦沐_XM
捡到一只小狐狸,怎么办?在线等,挺急的……
6.9万字8个月前
浮生梦…… 连载中
浮生梦……
希黎er
浮生一梦红雨落似水流年玄都开吾愿为汝芳心破苍穹你弃我奔赴沙场我在家中流泪光我乘乌篷船去你家乡“君临,你爱我吗?”“如果我不爱你,这世间,还会......
7.0万字8个月前