数学联邦政治世界观
超小超大

(额外篇章)强紧基数的等阶定义

强紧基数κ 的定义:对于任意 λ≥κ , Pκ(λ)=[λ]<κ上存在精良测度(fine measure)。

定理:强紧基数与如下两个命题等价:“对于任意集合X , X 上 κ 完全的滤子 F 可扩张为 κ 完全的超滤”、“任意语言Ըκ,ω 和命题集 Γ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足”。不难看出强紧基数是对超滤子定理和紧致性定理的推广。

引理1:如果任意集合 X 上的 κ 完全的滤子 F 可扩张为 κ 完全的超滤,那么 κ 是强紧基数。

证明:令λ≥κ,令

Aα={x∈[λ]<κ:α ∈ x} ,令

B={∩ξ<β Aξ:β<κ} ,最后令

F={x ⊆ [λ]<κ:∃g ∈ B(x ⊇ g)},不难证明 F 是 κ 完全的超滤子,根据假设令 ∪⊃F 是 κ 完全的超滤,显然 ∪ 是精良测度。⊣

引理2 :如果 κ 是强紧基数,那么对任意语言Ըκ,ω 和命题集 Γ ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足。

证明:用x,g,z 表示 Γ 的基数<κ 的子集,令 𝕬ₓ 表示 x 的一个模型。类似于Ըω,ω,我们也可以证明 Ըκ,ω 的Los定理:令

𝕬=∏ₓ 𝕬ₓ/≡∪,那么

𝕬 ⊨ ψ([f₁],· · ·,[fᵢ])当且仅当

{x ∈ Pκ(Γ):ψ([f₁](x),· · ·,[fᵢ](x))}∈∪,其中 ∪ 是 Pκ(Γ) 是精良测度。由于 ∪ 是精良测度,任选语句 φ∈Γ ,都有 Bφ={x∈Pκ(Γ):φ∈x} ∈∪,因此 𝕬 ⊨ Γ 。⊣

引理3 :”任意语言 Ըκ,ω 和命题集 Γ ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足”蕴含“对于任意集合 Ⅹ , Ⅹ 上 κ 完全的滤子 F 可扩张为 κ 完全的超滤”。

证明:向集合论语言中加入常元∪,F 以及 X 的全体子集,我们用 cʏ,Y ⊆ X 表示 Ⅹ 的子集常元。定义如下语句集 Σ: c∅ ∉ ∪ ∧ cₓ ∈∪ ; cʏ ∈ F → cʏ ∈∪;∧ξ<η cʏξ ∈∪ → c∩ξ<η Yξ ∈∪,其中 η<κ ; cʏ ∈∪∧cz ⊇ cʏ → cz ∈ ∪ ; cʏ ∈∪↔ cʏ-ʏ ∉ ∪。上述的每一个语句的长度都<κ且没有出现无穷个变元,因此符合Ըκ,ω 的定义。下面证明 Σ 的<κ的子集都可满足:任选 Σ' ⊂ Σ 且 |Σ'|<κ ,由于 Σ' 出现的常元数<κ ,不妨假设 Σ' 对子公式封闭。不难证明,存在一个赋值 l 使得所有出现在 Σ' 的形如 cʏ ∈∪ 的公式,都有 l (cʏ) ∈ F,根据选择公理,我们让 W ⊃ F 为一个超滤, W 就是 Σ' 的模型,因此 Σ 的<κ 的子集都可满足,那么 Σ 的模型 M 满足 M ≅ X ,因此可以诱导出一个X上的 κ 完全的超滤∪ ⊃ F,定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

青春中的白月光 连载中
青春中的白月光
蝴蝶也将死去
【已完结】“小姐,您好我叫江楚渝”“你好!我叫顾晚秋!既然交换了名字那今后就是朋友了!”“故事结束了”
1.8万字1个月前
南板 连载中
南板
萝卜柚子
『现代都市玄幻×理念悬疑爆笑』在这个拥有六芒星的架空现代玄幻世界,黎姻、Fvig、江户玖、宋倾华四人在高中相识后阴差阳错的被卷入了一场布满阴......
21.2万字4周前
如果历史是一群喵之世界大逃亡 连载中
如果历史是一群喵之世界大逃亡
岛缘_雪
历喵们不知怎么到了地球上,先斩后淹,逃亡许久……最终,会怎么样呢?
3.8万字4周前
喜美:逆珖 连载中
喜美:逆珖
慕晚a
“虚伪”〔喜美第一季〕(聪明痞帅喜×神秘少女美拟人化不喜勿喷)
3.2万字4周前
—我是妖— 连载中
—我是妖—
尘七缘
黑衣赤瞳的女孩子对那温润的男人咧嘴笑了:“儿砸,多年不见,你居然比我高了?”……“打个赌,你能把站在天台上那个人救下来,我就请你吃一年的饭!......
10.3万字4周前
重生后再来一次 连载中
重生后再来一次
。_239150882947040160
自己看
1.6万字4周前