数学联邦政治世界观
超小超大

良定义(well-defined)

一般我们是在讨论一个函数的时候关注“良定义”(well-defined),为什么呢?假设我们讨论一个关系 R(x,y)⊆A×A (出于简便我们只考察二元关系),我们不用担心是否有 ∀x∃!yRxy 或者其它别的要求,因为任意 P⊆A×A 都是一个关系。但函数就不一样了,我们需要知道 R 到底是不是一个函数,即它是否满足 ∀x∃!yRxy 。

1.1.3设R是W上的二元关系。在例1.2中,我们定义R的自反闭包为R∪{(u,u)|u ∈ W}. 但我们也可以给出类似于这些的定义

1.2模态语言

定义1.6中的R⁺和R*,即它是W上包含R的最小自反关系:

RΓ=∩{R'|R'是W & R ⊆ R'上的自反二元关系}.

解释为什么这个新定义(以及R⁺和R*的定义)是好定义的,证明了自反闭包的两个定义的等价性。最后,证明了R⁺uυ当仅当有一列元素序列u=ω₀,ω₁,. . .,ωₙ=υ 使得对于i<n我们有Rωᵢωᵢ₊₁,给出了自反传递闭包的相似序列定义。

在问题1.1.3中,作者要求我们判断“反射闭包”这个概念是不是良定义的。我们称 S 是 R 的反射闭包,当且仅当 S⊇R 且 ∀x∈dom(S),(x,x)∈S 。作者采用了如下定义方式:

S=⋂{P:P⊇R∧P是反射闭包} ,注意到这个定义方式本身就是定义了从 R 到 S 的函数: R↦S ,因此我们的任务就转化为“ R↦S 这个映射是不是一个函数?”换言之,“是否满足 ∀R∃!S(R↦S) ?”

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

绝世临,浩东情 连载中
绝世临,浩东情
字言不合
0.9万字5个月前
快穿之大佬又疯啦 连载中
快穿之大佬又疯啦
古_098304736
简介正在更新
46.0万字5个月前
彼岸花杀 连载中
彼岸花杀
韬家夏陌
一位女杀手,因为救一朝好心,救了一个老婆婆,得到了血泪,引来杀身之祸。死后与自己留在玄武大陆的灵魂合二为一……(作者我是一个追星女孩,偶尔会......
15.7万字5个月前
龙逆出渊 连载中
龙逆出渊
墨雨倾心
以往,我从不知道自己究竟为何而生?似乎眼中的未来一片的茫然。如今,我明白了,我想要变的强大,强大到可以守护我所保护的一切。无能,不过是自己懦......
13.9万字5个月前
超变战陀之观影以往 连载中
超变战陀之观影以往
紫绢绣球
观影,主cp:星寒,星空,星澜,主观影二代
0.8万字5个月前
神魔契约之光影双生 连载中
神魔契约之光影双生
彩虹花微笑
《神魔契约》前传,在人类还未出现前上帝创造了米迦勒与路西法一对双生子,双生子永世不得善终,终有一人化为流星陨落,米迦勒与路西法的命运会如何呢......
11.2万字5个月前