数学联邦政治世界观
超小超大

特殊篇章(数学解释)八

可数不完全的超滤生成的超幂模型是可数饱和:

事实上我们有比题目更好的条件:假设可数语言 Ը, I 是指标集, U 是 I 上的可数不完全超滤, 𝕬ᵢ 是 Ը 模型,那么 ∏ᵢ 𝕬ᵢ/≡∪=𝕬 是 ω₁ 饱和模型。

证明:假设 B ⊆ A 是一个可数子集, p(x) 是以 B 中元素为参数的一个型,有可数语言可得 p(x) 可数,因此不妨设

p(x)={ψₙ(x,[fₙ₁],⋯,[fₙₖ])}ᵢ<ω (为方便起见,我们设 ψᵢ(x,y→) 中的自由变元个数相同,都为 k+1 )。令 ϕₙ(x)=⋀ᵢ≤ₙ ψᵢ(x) ,由于 p(x) 在 𝕬 中有穷可满足,因此对于任意 n ,都有 𝕬 实现 ϕₙ(x) ,即 Yᵢ={i∈I:𝕬ᵢ ⊨ ∃xϕₙ(x,fₙ₁(i),⋯,fₙₖ(i))}∈U 。

由于 U 是可数不完全的,因此存在序列 X₀⊃⋯⊃Xₙ⊃⋯ 满足 ∀i∈ω,Xᵢ∈U 且 ⋂Xᵢ=∅ ,令 Zᵢ=Xᵢ∩Yᵢ ,那么 Zᵢ∈U∧⋂ᵢ Zᵢ=∅ 。定义 ρ:I→ω 满足 ρ(i)=max{n∈ω:i∈Zn} ,显然有 i∈Zₙ ↔ ρ(i)≥n 。现在我们定义一个函数 g:I→⋃ᵢ Aᵢ ,使得 [g] 实现 p(x) :假设 i∈I∧ρ(i)=0 ,那么令 g(i) 为 𝕬ᵢ 中任意元素;假设 ρ(i)>0 ,那么 𝕬ᵢ ⊨ ∃xϕᵨ₍ᵢ₎(x,fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ(i)n(i)),令 g(i)

满足 𝕬ᵢ ⊨ ϕᵨ₍ᵢ₎(g(i),fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ (i)) 。不难看出 [g] 在 𝕬 中实现了 p(x) ,即对于任意 ψ(x)∈p(x) 、都有 {i∈I:𝕬ᵢ ⊨ ψ(g(i))}∈U ,因此定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

重生羸弱少年后 连载中
重生羸弱少年后
书楂
他重生了,成为了一个羸弱少年
0.2万字4周前
织梦:咸鱼的自我救赎 连载中
织梦:咸鱼的自我救赎
Danork小琳
一条摆烂的咸鱼在失利后以梦境进行的自我救赎
2.6万字4周前
星变(双生) 连载中
星变(双生)
苦查子
Thetrappedbrastinthecagealwaysyearnsfofreedom.(笼中的困兽永远渴望自由)我很希望我能没有这个身......
0.5万字4周前
魔法世界林意嘉 连载中
魔法世界林意嘉
姜姜J
新书第一!我的神兽大本营上市了,绝对比这本好看!欢迎大家,谢谢支持~本书介绍:40多集的时候我写得可能有些草率——一定要坚持看下去啊!!!后......
10.5万字4周前
神凤废物要逆天 连载中
神凤废物要逆天
琑敨
废物白清颜(无颜)可谁知她又是神凤之后,受人排挤,受人冷落,受人背叛,被众人讨伐,还自杀过,可他的师傅,他的好友,他的哥哥会永远的在她的背后......
10.2万字4周前
抖落一身桃花月 连载中
抖落一身桃花月
睡觉柚子
“如果你想我你就会找我,如果我想你我就会想你找我。”顾许,高二的故事还算数吗?女主:小白花/甜美系/不爱就逃小笨蛋男主:酷拽/外科医生爱着就......
5.6万字4周前